Brampton Transit BUS MAINTENANCE & STORAGE FACILITY

Appendix J

Hydrogeological Study

March 18, 2021

Prepared by

Hydrogeological Study – Proposed Johnston Transit Facility

10192 Highway 50, Brampton, Ontario

The City of Brampton

Final – November 23, 2020

Internal Ref: 665125

Notice to Reader

This report has been prepared and the work referred to in this report has been undertaken by the Environment & Geoscience business unit of SNC-Lavalin Inc. (SNC-Lavalin) for the exclusive use of the City of Brampton (the Client), who has been party to the development of the scope of work and understands its limitations. The methodology, findings, conclusions, and recommendations in this report are based solely upon the scope of work and subject to the time and budgetary considerations described in the proposal and/or contract pursuant to which this report was issued. Any use, reliance on, or decision made by a third party based on this report is the sole responsibility of such third party. SNC-Lavalin accepts no liability or responsibility for any damages that may be suffered or incurred by any third party as a result of the use of, reliance on, or any decision made based on this report.

The findings, conclusions, and recommendations in this report (i) have been developed in a manner consistent with the level of skill normally exercised by professionals currently practicing under similar conditions in the area, and (ii) reflect SNC-Lavalin's best judgment based on information available at the time of preparation of this report. No other warranties, either expressed or implied, are made as to the professional services provided under the terms of our original contract and included in this report. The findings and conclusions contained in this report are valid only as of the date of this report and may be based, in part, upon information provided by others. If any of the information is inaccurate, new information is discovered, site conditions change, or applicable standards are amended, modifications to this report may be necessary. The results of this assessment should in no way be construed as a warranty that the subject site is free from any and all contamination.

Any soil and rock descriptions in this report and associated logs have been made with the intent of providing general information on the subsurface conditions of the site. This information should not be used as geotechnical data for any purpose unless specifically addressed in the text of this report. Groundwater conditions described in this report refer only to those observed at the location and time of observation noted in the report.

This report must be read as a whole, as sections taken out of context may be misleading. If discrepancies occur between the preliminary (draft) and final versions of this report, it is the final version that takes precedence. Nothing in this report is intended to constitute or provide a legal opinion.

The contents of this report are confidential and proprietary. Other than by the Client, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of the Client and SNC-Lavalin.

Table of Contents

1	Introduction	1
1.	.1 Objectives	1
1.	.2 Site Description	1
1.	.3 Proposed Development	1
1.	.4 Scope of Work	2
1.	.5 Deviation from the Original Scope	2
2	Methodology	4
2.	.1 Drilling and Well Installation	4
2.	.2 Groundwater Monitoring	4
2.	.3 Surface Water Monitoring	5
2.	.4 Water Quality Sampling	5
2.	.5 Hydraulic Conductivity Test	6
2.	.6 Water Balance Analysis	6
3	Regional Geology and Hydrogeology	8
3.	.1 Physiography	8
3.	.2 Geology	8
3.	.3 Hydrogeology	10
3.	.4 Surface Water Features	11
3.	.5 Climate	11
4	Site Conditions	13
4.	.1 Stratigraphy	13
4.	.2 Groundwater Level	14
4.	.3 Hydraulic Conductivity	15
4.	.4 Groundwater Quality	15
4.	.5 Base-flow Monitoring	16
4.	.6 Groundwater and Surface Water Interactions	16
5	Dewatering Requirement	17
5.	.1 Dewatering Assessment	17
5.	.2 Discharge Plan	18

6 Dev	3 Development Impact Assessment 2			
6.1	Impact on Local Groundwater Uses	21		
6.2	Impact on Surface Water Features	22		
6.3	6.3 Impact on Water Quality			
6.4	Water Balance Analysis	23		
7 Dev	velopment Considerations	25		
7.1	Groundwater Recharge Management	25		
7.2	Potential Contaminants of Concern	25		
7.3	7.3 Opportunities and Constraints 25			
7.4	7.4 Mitigation Measures 26			
7.5	Monitoring and Sampling Plans	27		
8 Co	nclusions and Recommendations	29		
9 Ref	erences	30		

List of Figures

- 1 Site Location Plan
- 2 Current Site Layout
- 3 Primary and Secondary Humber River Sub-watersheds
- 4 Physiographic Regions in the Humber River Watershed
- 5 Quaternary Geology
- 6 Estimated Groundwater Recharge Rates
- 7 Locations of Municipal and PGMN Wells
- 8 Well Head Protection Areas
- 9 Highly Vulnerable Aquifers

List of Tables

- 3.1 Hydro-stratigraphic Units within the Humber River Watershed
- 4.1 Groundwater Level Measurements Geotechnical/Environmental Investigation
- 4.2 Groundwater Level Measurements Hydrogeological Investigation
- 4.3 Results of Hydraulic Conductivity Analysis
- 4.4 Groundwater Analytical Results City of Brampton Storm Sewer By-Law (90-75)
- 4.5 Groundwater Analytical Results Major Ion Chemistry
- 5.1 Input Parameters for Dewatering Assessment
- 6.1 Annual Recharge Volumes Pre- and Post-Development

List of Appendices

- A Site Plan Concept
- B Borehole Location Plan and Borehole/Well Logs
- C Hydraulic Conductivity Analysis
- D Groundwater Quality Results
- E Dewatering Assessment
- F MECP Well Records
- G City of Brampton Official Plan Schedule D
- H Water Balance Analysis
- I Groundwater Contaminants of Concern

1 Introduction

The Environment & Geoscience business unit of SNC-Lavalin Inc. (SNC-Lavalin) was retained by the City of Brampton (the City) to complete a due diligence hydrogeological study, in addition to the geotechnical investigation and environmental site assessment (ESA), prepared under separate cover (SNC-Lavalin, 2019a and 2019b), for the proposed Johnston Transit Facility located at the property with a municipal address of 10192 Highway 50, Brampton, Ontario.

It is understood that the City owns the northeastern portion of the property (identified as "Parcel A1") and plans to purchase an additional "L"-shape parcel located in the south and west portions of the property (identified as "Parcel A"); as well as a small parcel south of the proposed building footprint and west of Highway 50 (identified as "Parcel B"). Collectively, all these three (3) Parcels, herein, are referred to as the Site (or the Project).

1.1 Objectives

The purpose of the due diligence hydrogeological study is to i) characterize existing Site hydrogeological conditions, ii) determine the needs and options for groundwater control for the foundation and sub-grade structures, iii) assess potential impacts to the local groundwater regime, and iv) determine the need for mitigation measures, if any. This report may also be used to support the registration of Environmental Activity and Sector Registry (EASR) for water taking approval/permit from the Ministry of the Environment, Conservation and Parks (MECP).

1.2 Site Description

The Site is located on the southwest corner of the intersection of Highway 50 and Cadetta Road, in the City of Brampton, Ontario (**Figure 1**). Two (2) residential dwellings, nine (9) barns for storage and/or livestock and five (5) silos are located directly south of the Site.

A metal shed located on Parcel A1 for the storage of farm equipment/machinery is present at the Site, no further structures are present on the Site. It is understood that a portion of Parcel A1 has been regraded/cleared and backfilled with crushed stone/asphalt and is being used as a satellite yard by the City's Works Department. The current layout of the Site is shown on **Figure 2**.

The Site is primarily flat with a gentle slope towards the west. The Site is bounded by Cadetta Road and industrial/commercial properties to the north, Highway 50 and a trucking facility to the east, and farm lands to the south and west. The land use at the Site is currently agricultural.

1.3 Proposed Development

The general Project development information was obtained from the Site Plan Concept (draft) provided by the City of Brampton dated March 28, 2019 (**Appendix A**). Based on the information provided to date, the proposed facility includes a main building/structure, four (4) parking lots and one (1) storm management pond and landscaping areas.

The proposed building is assumed to be supported by spread footings and the bottom of the foundation (typical) is expected to be approximately 3 m below ground surface (bgs). During the construction of the structure/building foundations, open-cut excavations and trenches are expected to be used. The bottom of the open-cut excavations is expected to be approximately 0.5 m below the bottom of the footings to accommodate the placement of the beddings or engineering fill.

1.4 Scope of Work

This report has been prepared in general accordance with the Additional Scope of Work Request (Hydrogeology Study and Report) provided by the City of Brampton, as well as the requirements as described by the Ontario Regulation 63/16 Registrations Under Part II.2 of the Act – Water Taking and Technical Guidance for Hydrogeological Studies in support of Category 3 PTTW applications posted on the MECP Website.

The primary scope of work for the additional hydrogeological study is summarized as follows:

- > Drilling and installation of two (2) groundwater monitoring wells (for the purpose of hydrogeological investigation);
- Monitoring groundwater levels in four (4) wells (two newly installed hydrogeological monitoring wells, each paired with an environmental monitoring well);
- Collecting groundwater sampling in three (3) wells: two (2) on Parcel A/A1 and one (1) on Parcel B;
- > Conducting in-situ single well response tests in five (5) monitoring wells;
- Conducting private well survey in the Project surrounding areas, mainly involving water supply wells identified through desktop search of the MECP water well database;
- > Background review of available published watershed study reports, hydrogeological reports, water well records and geological mapping;
- Review of Site geotechnical investigation report and Phase Two ESA results (including subsurface soil conditions, groundwater level and groundwater quality results);
- Review available historical climate data and performing water balance analysis to assess preexisting and post-development annual recharge rates at the Site;
- Performing hydraulic conductivity (K) test analysis to determine the K values for different soils or stratigraphic units encountered at the Site;
- > Evaluating dewatering needs for the construction of the Project;
- Assessing potential environmental impacts of the Project construction and dewatering activities to surrounding groundwater users and the natural function of the environment;
- > Providing recommendations on mitigation measures and monitoring plans; and
- > Preparation of a hydrogeological study report documenting the results and findings.

1.5 Deviation from the Original Scope

Surface water sampling and base-flow/streamflow monitoring of the creek (Rainbow Creek) could not be completed as the creek was dry during the hydrogeological investigation.

- Sampling of Private water wells was not conducted (or not deemed necessary) as the private water supply wells identified during the desktop search were either decommissioned or replaced by the Region of Peel municipal water supply system, which were verified through the private well (door-todoor well) survey (a few properties did not reply to our request or answer the door).
- Two (2) hydraulic conductivity (K) tests could not be completed using the manual bail-down method as planned due to the fast water recovery in these two (2) wells (attempts were made, but sufficient drawdown could not be achieved by using the manual bail-down). An electrical submersible pump was used during the second round of the K test to achieve the desired groundwater drawdown in these two (2) wells.

2 Methodology

2.1 Drilling and Well Installation

Two (2) boreholes (BH-02B and BH-51B) for the purposes of hydrogeological investigation were installed in boreholes drilled at the Site by Landshark Drilling Inc. on June 19 and 20, 2019. Drilling was carried out under the supervision of SNC-Lavalin personnel. The borehole/well location plan and selected borehole/well logs are provided in **Appendix B**.

Drilling was conducted using a truck-mounted, CME-75 drill rig. Boreholes BH-02B and BH-51B were drilled using 0.2 m outside diameter (OD) hollow stem augers and were advanced to a depth of approximately 9.6 m and 8.5 m below ground surface (bgs), respectively.

The two (2) boreholes were converted to monitoring wells upon completion of drilling and designated as MW-02B and MW-51B, respectively. The monitoring wells at each of the clusters (MW-02/MW-02B and MW-51/MW-51B) were completed in close proximity to each other (i.e., within 2 m). The two (2) wells were completed at a depth of 9.6 m and 8.5 m bgs, respectively, and were constructed using 5.1 cm diameter PVC piping and with 1.5 m (5 ft) long screens and solid riser extending up to above ground surface. A clean silica sand pack was placed around each screen and isolated with hydrated bentonite to slightly below grade. The wells were completed at surface with above ground protective steel casings set in concrete. The riser pipe was sealed with a j-plug. Borehole and monitoring well construction logs are included in **Appendix B**. The wells were equipped with dedicated sampling equipment including low density polyethylene (LDPE) tubing and inertial foot valves.

The two (2) monitoring wells were developed upon completion of installation by purging approximately three (3) borehole volumes of water (calculated as the volume of standing water plus the volume of water in the sand-pack surrounding the well screen) upon completion of the well installation.

Newly installed monitoring wells were surveyed by SNC-Lavalin personnel on October 21, 2019 to establish the ground surface, well casing and riser elevations. The ground surface elevations at borehole locations were also surveyed. The survey was completed using a Trimble RX 5800 high precision unit (0.01 m horizontal accuracy and 0.01 m vertical accuracy), with elevations relative to geodetic above mean sea level (amsl).

2.2 Groundwater Monitoring

Groundwater levels in monitoring wells MW-02B and MW-51B (along with other environmental monitoring wells) were measured relative to top of riser pipe using a water level meter of Heron Instruments on June 27, 2019 and October 21, 2019.

Monitoring wells MW-02 and MW-51 completed during the geotechnical and environmental investigations were selected for the purposes of hydrogeological assessment. The data from the monitoring well clusters, i.e. MW-02/MW-02B and MW-51/MW-51B, are to be used to assess vertical hydraulic gradients at these locations.

2.3 Surface Water Monitoring

The base-flow/stream flowing monitoring of the creek (i.e., Rainbow Creek) could not be completed as planned, as the creek was dry during the investigation. The creek crossings at Cadetta Road (up-stream of the Site) and the driveway of the farm land of 10192 Highway 50 were all dry (by visual observation) during the site visits made by SNC-Lavalin personnel in July 2019.

2.4 Water Quality Sampling

Groundwater Sampling

Groundwater sampling was conducted in three (3) selected monitoring wells MW-22, MW-51B and MW-74. The sampling of monitoring wells MW-22 and MW-51B was completed in July 2019, and sampling of monitoring well MW-74 was conducted in October 2019.

The sampling was conducted using dedicated LDPE tubing and plastic foot valves. Prior to sampling, the wells were purged approximately three (3) well volumes of water to remove the standing water in the wells. Samples for total metals analysis were not field filtered, as the sampling results will be compared to Ontario Provincial Water Quality Objectives (PWQO) or City of Brampton Sewer By-Law (90-75) limits. Collected groundwater samples were submitted to Bureau Veritas Laboratories of Mississauga, Ontario for laboratory analyses of those parameters as describe by the City of Brampton Sewer By-Law and major ion chemistry parameters.

Samples were collected directly into laboratory supplied sampling containers.

Surface Water Sampling

Surface water sampling could not be completed as the creek was dry during the investigation.

QA/QC Program

A quality assurance/quality control (QA/QC) program was implemented to minimize and quantify impacts introduced during sample collection, handling, shipping and analysis. As part of the QA/QC program, sampling protocols included minimizing sample handling; submitting field QA/QC samples (field duplicate sample); using dedicated sampling equipment; using sample specific identification and labelling procedures; and using chain of custody records.

Private Well Survey and Sampling

Prior to field work program, a notification letter (discussed further in Section 6) was prepared by SNC-Lavalin (developed in conjunction with the City Brampton) and delivered to each of the properties located within 300 m from the site (west of Highway 50) to confirm their willingness to participate in the water sampling program and obtain consent to access the property to conduct well survey.

The notification letter was hand delivered to the owners/tenants during the site visits and door-to-door well survey. Where the owner of the residence/property was present during the visit, the requirements were discussed in person. When the owner was not at home (on the property), the letter was either provided to the tenant or left in their mail box.

Based on the results of the door-to-door well survey, the private well sampling was deemed not necessary (thus not conducted) as the properties visited were all reported to be connected to and serviced by a municipal drinking water supply system. The identified water supply wells during the desktop survey (within 300 m from the site) were either decommissioned or not in use, confirmed through in-person interviews, telephone conversations or emails.

2.5 Hydraulic Conductivity Test

A total of five (5) in-situ hydraulic conductivity (K) tests (i.e., single well response tests) were completed in July and October 2019. The K tests were completed in three (3) monitoring wells (MW-03, MW-22 and MW-74) using the manual bail-down/rising head method where groundwater recovery is relatively slow and two (2) wells (MW-02B and MW-51B) using an electrical submersible pump to achieve the desired drawdown, as these wells displayed higher recovery rates. Water level transducers (Solinst Level Loggers[™]) and/or manual measuring were used to record water levels during the K tests. Initial groundwater levels were measured prior to the start of the tests. The water levels were allowed to recover to at least 90% of the original drawdown before ending the tests.

The hydraulic conductivity analysis was completed using the commercial software AquiferTest v.8.0 developed by Schlumberger Water Services. The Bouwer & Rice solution and Theis Solution with Jacob Correction was used to perform the analysis.

2.6 Water Balance Analysis

Thornthwaite Model

The existing conditions of the water balance at the Site was assessed by using a monthly accounting procedure based on the methodology referenced from the U.S. Department of the Interior, U.S. Geological Survey (Gregory J. McCabe and Steven L. Markstrom, 2007). The water-balance model was originally presented by Thornthwaite (Thornth-waite, 1948; Mather, 1978, 1979; McCabe and Wolock, 1999; Wolock and McCabe, 1999). The model is referred to as the Thornthwaite model.

Inputs to the model include mean monthly temperature (T, in degrees Celsius), monthly total precipitation (P, in millimetres), and the latitude (in decimal degrees) of the location of interest. The latitude of the location is used for the calculation of daylight hours, which is needed for the calculation of potential evapotranspiration (PET).

The water-balance model has seven (7) input parameters (runoff factor, direct runoff factor, soil-moisture storage capacity, location latitude, rain temperature threshold, snow temperature threshold, and maximum snow-melt rate of the snow storage) that are modified through the graphical user interface. The range and default values for these parameters are set by the model.

Infiltration

The water balance method developed by Thornthwaite and Mather (1957) determines the potential and actual amounts of evapotranspiration and water surplus (or excess of precipitation over evapotranspiration). Infiltration factors are used to determine the fraction of water surplus that infiltrates into the ground (to recharge groundwater) and the fraction that runs off to nearby streams.

Hydrogeological Study – Proposed Johnston Transit Facility 10192 Highway 50, Brampton, Ontario

The Stormwater Planning and Design Manual (MOE, 2003) provides a method to estimate the infiltration amount based on the infiltration factor (i). The factor "I" is applied to the water surplus to estimate the infiltration (groundwater recharge) for a given area with pervious cover.

3 Regional Geology and Hydrogeology

The project study area (i.e., 500 m radius from the Site boundaries) is located within the Rainbow Creek Subwatershed, which belongs to the Main Humber River Primary Watershed (**Figure 3**). The following regional geological and hydrogeological settings were largely referenced from the Humber River State of the Watershed Report (TRCA, 2008).

3.1 Physiography

The study area lies within a physiographic region known as the South Slope (**Figure 4**). The South Slope physiographic region is defined as the area along the southern slope of the Oak Ridges Moraine (ORM) and extends along the moraine between Durham Region in the east to the Niagara Escarpment in the west. The South Slope is characterized by topography that gently slopes southward towards Lake Ontario and consists of a smooth, faintly drumlinized, clay till plain (TRCA, 2008).

Drainage flows from the highest elevations (approximately 490 m amsl) along the Niagara Escarpment and the ORM to the north shore of Lake Ontario (75 m amsl). The ORM is the prominent ridge of land separating the Lake Ontario drainage basin from the Georgian Bay and Trent River drainage basins.

3.2 Geology

The geology within the Humber River Watershed generally consists of Quaternary sediments infilling a fluvial valley system incised into the bedrock surface. This bedrock valley system drained the upper Great Lakes basin to what is now the St. Lawrence River. This sedimentary package ranges in thickness from zero (bedrock outcrop) to 270 metres within the Laurentian bedrock valley system.

Surficial Geology

The Humber River Watershed has a wide range of surficial geological features. The upper reaches, particularly in the west, are characterized by significant thicknesses of sand and gravel associated with the Oak Ridges Moraine. These areas comprise the key recharge areas in the watershed. In some areas, the sand and gravel is overlain by a thin layer of silt till (Halton Till), but with the hummocky topography (Leney and Kenny, 2003) and thin till, significant infiltration is still possible.

The surficial geology of the remainder of the watershed is dominated by low permeability silt, clay, and silt till of the Halton Till Formation, although there are sands in the lowest reaches associated with the former Lake Iroquois shoreline and some isolated recent fluvial sand deposits along the Humber River.

According to the Ontario Geological Survey (OGS) online maps (<u>http://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth/surficial-geology)</u>, the surficial geology in the project study area consists of fine-textured glaciolacustrine deposits of silt and clay, with minor sand and gravel.

Quaternary Geology

Quaternary sediments within the Humber River watershed consist of glacial and interglacial deposits (Eyles, 2002 and Karrow, 1989). **Figure 5** summarizes the Quaternary sediments generally found within the Humber River Watershed.

Only the upper geological units including glaciolacustrine deposits and Halton Till are further discussed here as these deposits are most likely to be encountered during the construction of the project.

The uppermost surficial geologic unit consists of a sequence of glaciolacustrine deposits that form a veneer over the underlying Halton and Newmarket tills. These deposits vary from near shore sands and gravel beach deposits of the Lake Iroquois shoreline located within the southern part of the watershed, to the fine sands, silts and clays of glaciolacustrine deposits (ponding) that occur north of the Lake Iroquois shoreline. These sediments generally form a thin veneer over the underlying deposits, although locally they can be several meters thick.

The Halton Till deposit is typically 3 to 6 m thick, but locally its thickness can be as much as 40 meters. The Halton till generally comprises sandy silt to clayey silt, interbedded with silt, clay, sand and gravel. In some areas it is very clay-rich where the Halton ice has overridden glaciolacustrine deposits. The Halton Till is believed to form the surficial till unit extending southward to the Lake Iroquois shoreline. On the southern flanks of the Oak Ridges Moraine, the Halton Till overrides the granular Oak Ridges Moraine deposits.

Figure 5: Quaternary Deposits within the Study Area (Eyles, 2002)

Bedrock Geology

In most of the Humber River watershed, the bedrock consists of Georgian Bay Formation (interbedded limestone and shale). These rocks were deposited over the Canadian Shield. The structures of the Paleozoic rock influence the groundwater resources and flow patterns. Glaciofluvial erosion may have enhanced these structures and valleys (Gilbert and Shaw, 1994).

3.3 Hydrogeology

Hydro-stratigraphic Units

The hydrogeology within the Humber River Watershed is shaped by the stratigraphic framework (quaternary deposit profile) as shown in **Figure 5**. The regional hydro-stratigraphic units are summarized in **Table 3.1**.

The groundwater system within the watershed consists of three principal aquifers: 1) the upper aquifer system or Oak Ridges Moraine (ORM) aquifer complex occurs within deposits of the ORM and the Mackinaw Interstadial Unit; 2) the intermediate aquifer or Thorncliffe aquifer complex occurs within the Thorncliffe formation; and, 3) the deep aquifer system or Scarborough aquifer complex occurs within the deposit of the Scarborough formation.

The Thorncliffe and Scarborough aquifers are separated from the Oak Ridges Moraine aquifer by layers of Newmarket till. The Newmarket till effectively forms a protective barrier for the deeper aquifers.

Geological Units	Туре	Hydro-Stratigraphic Units
Recent glaciolacustrine deposits		
Halton Till (or Kettleby Till)	Aquitard	Halton Aquitard
Oak Ridges Moraine/Mackinaw Interstadial	Aquifer	Oak Ridges Aquifer Complex
Newmarket Till	Aquitard	Newmarket Aquitard
Thorncliffe Formation	Aquifer	Thorncliffe Aquifer Complex
Sunnybrook Drift	Aquifer	Sunnybrook Aquitard
Scarborough Formation	Aquitard	Scarborough Aquifer Complex
Weathered Bedrock		Limestone and shale

Table 3.1: Hydro-stratigraphic Units within the Humber River Watershed

Groundwater Flow

Groundwater flow within the shallow aquifer system is generally from the topographic highs associated with the ORM towards the topographic lows associated with the major stream channels and Lake Ontario. In the shallow groundwater flow system, groundwater flow patterns are influenced by ground surface topography, but are more significantly influenced by the network of local watercourses. Local deflections in flow direction towards tributary streams and their associated valleys can be expected.

Groundwater Recharge

The most significant groundwater recharge areas within the Humber River Watershed are located within the Oak Ridges Moraine. The northern end of the watershed, specifically the southern flank of the Oak Ridges Moraine, is the area with the highest recharge rates due to the sandy soils and hummocky topography.

The closest significant groundwater recharge area (SGRA), where infiltration to surficial sand and gravel deposits exceeds 200 mm/year, is located approximately 2.5 km northeast of the Site (**Figure 6**) (TRCA, 2008).

Well Head Protection Area

The closest municipal drinking water supply well is Kleinburg #3 (Region of York), which is located approximately 3.5 km northeast of the Site (**Figure 7**). This well was installed in Scarborough Aquifer Complex, with an average daily pumping rate of 761 m³/day (TRCA, 2008). The Site is located approximately 1.6 km from well head protection area (WHPA)-D, also known as the 25-year time-of-travel zone (**Figure 8**) (MECP, 2020).

Highly Vulnerable Aquifer

The Intrinsic Susceptibility Index (ISI) method was used to map highly vulnerable aquifers in the Source Protection Plan. Vulnerability was measured on a 10-point scale, reflecting how quickly water (and pollutants) moves from the ground surface to the aquifer (TRCA, 2008).

The closest highly vulnerable aquifer is located approximately 2.5 km northeast of the Site, where WHPA-B of municipal well Kleinburg #3 is delineated, with a vulnerability score of 6 (**Figure 9**) (MECP, 2020).

3.4 Surface Water Features

The Main Humber subwatershed drains an area of approximately 357 km² that includes Centreville Creek, Cold Creek and Rainbow Creek subwatersheds. The Rainbow Creek Subwatershed covers approximately 48 km² and is drained by two (2) watercourses, namely, rainbow Creek and Robinson Creek, which merge north of Highway 7 to form Plunkett Creek. Plunkett Creek joins the Humber River north of Steeles Avenue. Most of the Rainbow Creek Subwatershed is located within the City of Vaughan, with a portion to the Northwest extending into the Town of Caledon and a portion to the west extending into the City of Brampton (TRCA, 2008).

Rainbow Creek is not considered a major contributor to the overall baseflow, inputting less than 1% to the Main Humber subwatershed. Rainbow Creek tributaries were observed to be dry in the headwaters, and sampling was not possible throughout much of these reaches due to site specific conditions. Data from 1996 showed slightly higher baseflow contributions, ranging from 3 to 10 L/s (TRCA, 2008).

3.5 Climate

Within the Humber River watershed area, there are three main zones of relatively contiguous and uniform climate known as the Lake Ontario Shore, the South Slope/Peel Plain, and Oak Ridges Moraine/Horseshoe Moraine zones (named after the physiographic regions). These three zones are largely distinguished by differing precipitation and temperature patterns.

Based on Environment Canada climate stations in or near the watershed with at least 30 years of records, the average annual precipitation for this watershed during the period 1971 to 2000 ranged between 798 millimetres per year (mm/year) in Woodbridge (Station 6159575) in the South Slope/Peel Plain zone. The South Slope/Peel Plain zone has a relatively cooler mean annual temperature of about 7°C (Environment Canada, 2007).

The mean annual actual evapotranspiration for the region including the Humber River watershed has previously been estimated to be about 530 to 560 mm/year, reflecting seasonal periods of soil moisture limitations (Brown et al., 1980, Phillips and McCulloch, 1972, Morton, 1983). Through recent application of water budget modelling at the watershed scale, average annual total evapotranspiration is estimated to be 589 mm/year for the South Slope/Peel Plain zone. A value of about 525 mm/year is the average value for the entire watershed (TRCA 2008).

The modelled average annual water surplus (i.e., precipitation minus total evapotranspiration losses) under current conditions is 277 mm/year in the South Slope/Peel Plain. Average water surplus for the entire watershed was estimated at 330 mm/yr. Part of the water surplus will be converted to surface runoff into area watercourses and the balance will infiltrate through the soil profile and eventually recharge the upper portion of the groundwater system.

4 Site Conditions

Geotechnical investigations and environmental site assessment were completed by SNC-Lavalin in June and October 2019, as part the overall investigation program of the Project.

The field work of the investigations was carried out on Parcel A in June 2019 and then on Parcel B in October 2019. It consisted of drilling seventy-seven (77) boreholes, excluding the two hydrogeological borehole locations, in the footprint of the proposed transit facility and associated structures to maximum depths of 9.8 m. Seventy-three (73) boreholes, namely BH-01 to BH-73 were drilled on Parcel A and four (4) boreholes, namely BH-74 to BH-77 on Parcel B. The depths of boreholes range from 2.9 to 9.8 mbgs. Upon completion of drilling, ten (10) boreholes were converted to environmental monitoring wells (MW-02, MW-03, MW-22, MW-30, MW-33, MW-35, MW-51, MW-70, MW-74 and MW-75).

The locations of the completed environmental monitoring wells are provided in Appendix B.

4.1 Stratigraphy

Based on the review of the borehole logs (77 from the geotechnical investigation and 2 from the hydrogeological investigation), the interpreted subsurface soil conditions across the site are summarized as follows:

Fill Materials

Fill materials consisting predominantly of silty clay (with trace to some sand) was encountered immediately beneath the ground cover in all boreholes, except in BH-20 and BH-30 to BH-33. The fill materials extended to a depth of approximately 2.3 m bgs.

Sandy Silty Clay to Sandy Clayey Silt Till

A stratum of native soil consisting predominantly of sandy silty clay to sandy clayey silt till was encountered immediately below the fill materials in most of the boreholes at various depths ranging from 0.6 to 2.3 m bgs.

Sandy Silt to Silt Till

> Sandy silt to silt till was encountered at depths ranging from 2.3 to 9.8 m bgs in various boreholes.

Silty Sand to Sand Till

A silty sand to sand layer (with trace to some clay and trace gravel) was encountered between the depths of 3.6 to 9.1 m bgs in various boreholes. The soils with more gravel content were encountered between approximately 4.0 to 6.1 m bgs in boreholes BH-25, BH-27, BH-30 and BH-34. Some clayey cores were present between 6 to 7 m bgs.

Sandy Gravel

A layer of sandy gravel was encountered at depths between 6.7 to 9.1 m bgs in borehole BH-02B.

4.2 Groundwater Level

Groundwater levels were measured in monitoring wells completed during the geotechnical/environmental and hydrogeological investigations in June and October 2019. Measured groundwater levels across the Site are presented in **Table 4.1** and **Table 4.2**.

Well ID	Screen Interval (m bgs)	Date	Water Level (m bgs)
N/// 00		2019/06/27	3.6
IVIVV-02	4.6 to 7.2	2019/10/21	4.4
N/N/ 00		2019/06/27	2.3
IVIVV-03	3.0 to 6.1	2019/10/21	3.1
MM/ 00	O the $C $ Z	2019/06/27	0.3
IVIVV-ZZ	2.1 to 6.7	2019/10/21	0.8
MW/ 20		2019/06/27	2.1
10100-30	3.7 10 0.7	2019/10/21	3.2
		2019/06/27	2.5
10100-33	3.0 10 6.1	2019/10/21	0.9
	2.4 to 7.0	2019/06/27	0.6
10100-35		2019/10/21	2.4
	3.7 to 6.7	2019/06/27	6.3
10100-01		2019/10/21	2.2
	0.4 ± 0.7	2019/06/27	1.4
IVIVV-70	3.4 10 0.7	2019/10/21	2.3
MW-74	2.6 to 5.6	2019/10/21	2.6
MW-75	2.7 to 5.8	2019/10/21	3.4

Table 4.1: Groundwater Level Measurements – Geotechnical/Environmental Investigation

Table 4.2: Groundwater Level Measurements – Hydrogeological Investigation

Well ID	Screen Interval (m bgs)	Strata at the Screen Interval	Date	Water Level (m bgs)	Approximate Location
MW02	4.6 to 7.2	Sandy silty clay till	2019/06/27 2019/10/21	3.6 4.4	Northeast (up-gradient)
MW02B	7.9 to 9.4	Sandy gravel	2019/06/27 2019/10/21	3.6 4.5	Northeast (up-gradient)
MW51	3.7 to 6.7	Sandy silt till	2019/06/27 2019/10/21	6.3 2.2	Southwest (down-gradient)
MW51B	7.0 to 8.5	Silty sandy clay	2019/06/27 2019/10/21	2.8 3.8	Southwest (down-gradient)

Based on the above monitoring results, depths to groundwater in the monitoring wells ranged from approximately 0.8 m to 4.4 m bgs on October 21, 2019. The highest groundwater elevation at the site appears to be centered at monitoring well MW-22, which is located in the northeast portion of the site. The shallow groundwater flow directions were interpreted to be from the northeast portion of the site towards to the boundaries of the Site (**Appendix B**). The inferred horizontal groundwater hydraulic gradients range from 0.01 to 0.05 m/m. The vertical hydraulic gradients were estimated to be 0.004 m/m and 0.62 at MW-02/B and MW-51/B, respectively, and are considered to be downward.

4.3 Hydraulic Conductivity

The hydraulic conductivity analysis results are provided in Appendix C and summarized in Table 4-3.

Well ID	Screen Interval (m bgs)	Strata at the Screen Interval	Hydraulic Conductivity (m/s)
MW-02B	7.9 to 9.4	Sandy gravel	4.3×10^{-4}
MW-03	3.1 to 6.1	Sand till, silty clay seams	1.9 × 10 ⁻⁸
MW-22	2.1 to 6.7	Sandy silty clay till	7.0 × 10 ⁻⁹
MW-51B	MW-51B 7.0 to 8.5 Silty sandy clay till		4.3 × 10 ⁻⁶
MW-74	2.6 to 5.6	Sandy silty clay till, silty sand, sand	8.9 × 10 ⁻⁷
Max	imum value of shallow	8.9 × 10 ⁻⁷	
Arith	metic mean of shallow	3.0 × 10 ⁻⁷	

 Table 4-3:
 Results of Hydraulic Conductivity Analysis

It should be noted that the K test in MW-02B was conducted using a submersible pump set a discharge rate of 0.25 L/s due to the fast water level recovery. As a result, the pumping test was completed within one minute. The K analysis was completed using the Theis Solution (with Jacob Correction) for pumping test. Considering the short duration of the pumping test, the results are qualified in that it represents order of magnitude as would be expected for sand and gravel k values, however, the results may not fully reflect the actual physical characteristics of the aquifer. To obtain more representative site data at this level/layer (sandy gravel), a full scale pumping test is will be required (i.e., 24 to 72-hour continuous constant rate pumping test).

4.4 Groundwater Quality

The results of groundwater sampling for the City of Brampton Storm Sewer By-Law (90-75) and major ion chemistry parameters including analytical tables (**Table 4-4** and **Table 4-5**) and laboratory certificate of analysis are provided in **Appendix D**.

Sewer by-law results

The results indicate that concentration of iron in one well (MW-22) and concentrations of total suspended solids (TSS) in all three (3) wells (MW-22, MW-51B and MW-74) exceeded the City of Brampton Storm Sewer By-Law (90-75) discharge limits.

Major Ion chemistry

The results from the major ion chemistry analysis were compared to PWQO. No parameters were detected above the applicable PWQO.

The City of Brampton 625125 Final – November 23, 2020

4.5 Base-flow Monitoring

Base-flow/streamflow monitoring of the creek (Rainbow Creek) could not be completed as the creek was dry during the hydrogeological investigation.

4.6 Groundwater and Surface Water Interactions

Streams are typically fed/recharged to a varying degree by precipitation, overland runoff and groundwater discharge. Stream flows are dominated by groundwater discharge (often referred to as base-flow) during low flow seasons (i.e., in summer or winter). During wet seasons (i.e., higher water level in spring), streams may be recharging groundwater, particularly along reaches at higher elevations. Stream reaches at lower elevations are typically situated in groundwater discharge zones.

The Site is located in the middle portion of the Rainbow Creek Subwatershed. During dry seasons (i.e., in summer), the creek was dry. It seems that the Site is in a situation where there is limited or no base-flow contribution of groundwater to surface water during dry seasons. During wet seasons (with a higher stream water level), surface water may recharge groundwater.

5 Dewatering Requirement

5.1 Dewatering Assessment

Assumptions

For the purpose of dewatering assessment, the following assumptions were made based on the available information:

- The open cut method and temporary supporting system will be used to facilitate the construction of the building foundations (i.e., excavation walls will be approximately vertical);
- > It is assumed that the longest excavation to be opened at one time for the construction of the foundations is 300 m (i.e., south wall of the proposed building);
- The target groundwater level for dewatering is approximately 1.0 m below the bottom of the excavation;
- The base of the water bearing zone is assumed to be 3 m below the target groundwater level (to account for the depth of sumps/pumps); and
- > The water bearing zone is considered to be unconfined.

Input Parameters

Based on the footprint shown on the Site Plan Concept, and the results of groundwater level conditions observed during the geotechnical/environmental and hydrogeological investigations, the input parameters selected/determined for dewatering assessment are summarized in **Tables 5.1**.

Considering the foundation of the building is relatively shallow, conservative values of groundwater water levels and hydraulic conductivities obtained from shallow monitoring wells (excluding MW-02B and MW-51B) were used for the dewatering assessment.

The geometric mean of hydraulic conductivity results obtained (excluding MW-02B and MW-51B) is 1.3×10^{-7} m/s, using a conservative estimation to account for heterogeneity across the site a higher hydraulic conductivity of 1.0×10^{-6} m/s is applied to the dewatering assessment.

Table 5.1: Input Parameters for Dewatering Assessment

	Foundation Excavation	Note
Length of excavation (m)	300	The longest section to be excavated at one time
Width of excavation (m)	6	Assumed
Base of Excavation (m bgs)	3.5	
Initial groundwater level (m bgs)	0.5	Conservative/Higher value
Target groundwater level (m bgs)	4.5	1 m below the bottom of excavation
Groundwater drawdown (m)	4.0	
Hydraulic conductivity (m/s)	1 × 10 ⁻⁶	Conservative/Higher value

Note: bgs – below ground surface

Dewatering Rates

Details of the dewatering assessment including input parameters, equations and results are provided in **Appendix E**.

The results indicate that the typical daily dewatering rate was estimated to be 94,300 L/day, under the assumptions listed in Section 5.1, with no additional variations factored into the assessment. To account for seasonal or short-term groundwater level fluctuations, hydraulic conductivity heterogeneity and/or rain/surface water runoff and infiltration into the excavations, especially during the wet weather conditions, a safety factor of 2 was applied to the typical dewatering rates to provide a maximum daily dewatering rate (the worst case), which would be in the order of 188,600 L/day.

The dewatering radius of influence was estimated to be 12 m from the excavation limits.

Water Taking Permits

As the estimated maximum daily dewatering rate will be less than 400,000 L/day (but more than 50,000 L/day), an EASR registration is required for the project based on the worst-case scenario with the available inform provided to date.

5.2 Discharge Plan

In addition to groundwater seepage, rain/surface water may infiltrate and accumulate in open excavations during wet weather conditions. Therefore, water management and control at the Site may include both groundwater and storm water (rain and surface water runoff).

It should be noted that the following discharge plan is a high level plan. More detailed discharge plan should be developed when the detailed design of the building and site development become available. The discharge plan, as well as erosion and sediment control plan, should meet the applicable requirements from the MECP and other local authorities including, but not limited to, Department of Fisheries and Oceans Canada (DFO) and Toronto and Region Conservation Authority (TRCA).

Dewatering Methodology

For dewatering in a relatively small and shallow excavation (i.e., less than 5 m deep), water is typically pumped out using bottom suction submersible pumps installed in sumps constructed inside or immediately outside the excavations, typically installed below the base of the excavation.

To lower the groundwater levels outside the limits of deeper excavations, drilled wells (i.e., well points) may be installed beyond the limits of the excavation (i.e., behind the temporary support system). Groundwater is often pumped out of the wells and directed to header pipes at grade.

The methodology appropriate for each portion of the works should be selected by the contractor following a review of the geotechnical investigation and hydrogeological assessment reports.

During dewatering, daily water taking volumes (and/or cumulative volume) should be recorded by electronic calibrated flow meters or estimated by pump capacity. The detailed design and installation of the dewatering system should be completed by a licensed dewatering company (dewatering subcontractor) prior to construction.

Discharge Locations and Water Quality

Land 30 m away from Water Bodies

Dewatering effluent may be discharged to an undisturbed vegetated area that is located a minimum of 30 m away from all water bodies, wetlands, and drainage features. In this case, at the discharge location, appropriate energy dissipation and settling/filtration measures will be used to prevent erosion and sediment release to water bodies or drainage features. Effluent from the discharge location should be allowed to drain through a well vegetated area to the receiving water body or drainage feature. All discharge water returned to surface water features should meet the PWQO. A separate permit may be required from the local conservation authority (i.e., TRCA).

Land within 30 m of Water Bodies

If water is discharged to land within 30 m of a water body, the discharge criteria and notification are as follows, in addition to meeting the PWQO:

- The turbidity of the discharge shall not exceed 8 Nephelometric Turbidity Units (NTU) above the background level of the nearest water body,
- Background turbidity levels should be measured upstream and out of any influence of the discharge location (if applicable);
- At the discharge location, appropriate energy dissipation and settling/filtration measures will be used for discharge of extracted water to prevent erosion and sediment release to water bodies or drainage features as necessary; and
- The MECP shall be notified of the method prior to the first discharge. A separate permit is required from the local conservation authority (i.e., TRCA).

Surface Water Body

It should be noted that excess water from dewatering is not allowed to discharge directly to a surface water body under EASR registration.

Sewer System – Storm Sewer

If excess water from dewatering is to be discharged to the City of Brampton's storm sewer system, a separate agreement to discharge from the City of Bampton may be required prior to discharge.

The discharge water quantity and quality should meet the requirements as described in the City of Brampton Municipal By-Law 90-75 and/or the approved discharge agreement. The baseline water quality results have been discussed in Section 4.4. In addition, no visible petroleum hydrocarbon film or sheen shall be present in the discharge.

Sewer System – Sanitary and Combined Sewer

If excess water from dewatering is to be discharged to the Region of Peel sanitary and combined sewer, a separate agreement to discharge from the Region of Peel is required prior to discharge.

The discharge water quantity and quality should meet the requirements as described in the Region of Peel Sanitary Discharge limits (By-Law 53-2010) and/or in the approved discharge permit.

Water Treatment

As the baseline water quality at the Site exceeded the applicable discharge limits (storm sewer discharge limits), the water may need to be treated prior to discharge. The water treatment system should be designed and implemented by the contractor based on the baseline water quality and the results of verification sampling to be conducted by the contractor (if deemed necessary) prior to construction. Water quality should be tested after the treatment system to make sure the applicable criteria or limits are met prior to discharge. In this case, a relevant MECP Environmental Compliance Approval (ECA) may be required and an approval from the local conservation authority (i.e., TRCA) may be required as well.

Notification

In addition, prior to water taking, a written notice about the taking(s) should be given to the local municipalities (i.e., City of Bampton and/or Region of Peel) and the local conservation authority (i.e., TRCA) within whose jurisdiction the proposed water taking is located.

Contingency Measures

Contingency measures should be developed in the event that the discharge water quality does not meet the applicable criteria. In this case, the following contingency measures may be considered for implementation:

- Bring temporary storage tanks to the site to store the water. Stored water may be discharged at a later time (after settling and/or possible treatment system) when the water quality meets the discharge criteria.
- Where practical, hauling water off-site to a licensed receiver may be considered.

6 Development Impact Assessment

6.1 Impact on Local Groundwater Uses

Groundwater Quantity – Private Water Supply Wells

A desktop well survey was conducted to identify wells registered with the MECP within the study area. The purpose of the desktop well survey was to identify groundwater users in the surrounding areas that could potentially be impacted by the development of the property, including dewatering activities.

The desktop search identified a total of twenty-eight (28) well records within the project study area, as listed and mapped in **Appendix F**. Among them, there are fifteen (15) water supply wells, seven (7) test holes/observation wells, five (5) abandoned wells and one (1) well with an unknown use status.

To verify and confirm the current status of the identified water supply wells (groundwater users) and to assess whether other water supply wells may be present that had not been registered with the MECP, field visits and a water well survey were conducted by SNC-Lavalin technicians in July 2019.

Based on the survey findings, it is inferred that private properties in the project study area are serviced by the municipal water supply system as evidenced from the survey responses and observations of municipal water supply shut-off valves and fire hydrants in the area. During the survey, some property owners/tenants were not present, nor responded to the letter (Notification Letter for Private Well Survey, **Appendix F**) left in their mail box. The status of the remaining water supply wells in the MECP records could not be confirmed, however, based on the presence of municipal water supply it is expected that the wells may no longer be in service.

Considering that dewatering will occur only in the surficial/shallow hydro-stratigraphic units (i.e., less than 5 m bgs) and the identified water supply wells are not expected to be used, plus they are all located beyond the estimated dewatering zone of influence (12 m), minimal impacts to local groundwater users are expected due to the proposed dewatering activities.

Groundwater Quantity – Other Considerations

Activities during construction may include site preparation (i.e., clearing and stripping), dewatering, foundation excavation and soil stockpiling. During the operation phase, the Project activities may mainly involve maintenance and repairs.

Based on the understanding of the Project scope and activities during the construction and operation phases, as well as the baseline (pre-construction) environmental and groundwater conditions, the potential effects on groundwater quantity associated with the Project activities are presented as follows:

- Reduce groundwater recharge due to ground hardening and increase of runoff during site preparation (i.e., clearing and stripping) and development (pavement and structure).
- > Lower groundwater levels in the surrounding areas during construction, especially within the dewatering radius of influence, and thus may temporarily reduce groundwater contributions to nearby water supply wells and groundwater features (i.e., streams).

Change local groundwater flow patterns by blocking or redirecting groundwater flows due to new foundations (i.e., concrete spread footings with low permeability).

6.2 Impact on Surface Water Features

According to the City of Brampton Official Plan, Schedule D, Natural Heritage Features and Areas (2015), the Site is not located within, nor adjacent to a well head protection area, intake protection zones, environmentally significant areas, or areas of natural and scientific interest, and it is outside the Oak Ridges Moraine Conservation Plan Area. But the western portion of the Site lies within the Valley Land/Watercourse Corridor and Woodland areas (**Appendix G**).

The proposed dewatering work is near Rainbow Creek. The water taking may temporarily reduce the groundwater base-flow contribution to the stream flow. However, comparing to the annual mean base-flow (0.343 m³/s or 29,635,200 L/day) of the river based on the historical monitoring data (1965 to 2004) from Stream Gauge 02HC031 (West Humber River @ Highway 7), the estimated maximum water taking rates (188,600 L/day) are considered to be minimal (less than 1% of the annual mean base-flow). Also considering the short-term nature of the construction, no significant impact to the stream flow is expected associated with the proposed dewatering activities.

6.3 Impact on Water Quality

Groundwater Quality

As the groundwater table is relatively shallow in some areas especially near the creek (i.e., Rainbow Creek), potential contaminating activities (i.e., oil and/or hydraulic liquid handling, storage and leaking from equipment and machines, other chemical or hazardous material spills and leaking within the project footprint) during construction or operation may cause potential impacts on shallow groundwater qualities. Other potential impacts on groundwater quality and considerations are as follows:

- Mobilization of contaminated groundwater (i.e., discharge to the environment) due to dewatering.
- > Reduction in groundwater quality by increasing the pH value due to concrete curing.
- > Reduction in groundwater quality due to excavation and contaminated soil stockpiling.

Surface Water Quality

The potential impacts on surface water quality (i.e., Rainbow Creek) during the construction and operation of the proposed transit facility include the following:

- Reduction in surface water quality (i.e., total suspended solids) due to erosion and overland flow during construction involving ground disturbing, excavation, soil stockpiling and site grading activities.
- Potential impacts on surface water quality associated with contaminating activities (i.e., oil and/or hydraulic liquid handling, storage and leaking from equipment and machines, other chemical or hazardous material spills and leaking within the project footprint) during construction or operation periods through overland flows to the creek.
- Mobilization of contaminated groundwater (i.e., discharge to the environment/creek) due to dewatering.

6.4 Water Balance Analysis

The inputs used for the water balance calculations are based on the Project information and Environment Canada climate data from the Toronto Lester B. Pearson Int'l A (Toronto INT'L A) meteorological station for the period 1938 to 2012. The Toronto INT'L A station is located approximately 15 km south from the Site. The Soil Moisture Storage capacity of 100 millimeter was used for Clay Loam based on the SWM Planning and Design Manual (MOE 2003).

Based on the analysis of 75 years of climate data (monthly precipitation and temperature), the annual surplus is estimated to be 211 mm/year at the Site. The analysis results are provided in **Attachment H**.

Pre-Development Conditions

The infiltration factors for the pre-development conditions are described as follows:

- > Topography on the Site is relatively flat which will have an "i" topo of 0.3.
- Based on the grain size analysis, the surficial soils can be classified as Clay Loam ("i" soil = 0.2).
- > Vegetation covering majority of the Site consists predominantly of shallow rooted crops (i.e. manicured lawns) which has an "i" cover of 0.1.

The total pre-development infiltration factor for the Site is calculated at 0.6 and the annual recharge rate to groundwater would be 127 mm/year (211 mm/year multiplied by 0.6). Considering that the entire area of the Site is considered to be pervious before the development, with the total area of the Site being measured at approximately 16.5 hectares (165,000 m²), the total recharge volume was estimated at 20,900 m³/year at the Site.

Post-Development Conditions

Under the post-development conditions, the infiltration factors are adjusted to reflect the changes in soil types, vegetation and topography after the land development. As the land after development will have some impervious surfaces that prevent infiltration, such as building footprints, paved road and parking lots, the pervious area available for infiltration will thus be generally reduced.

The infiltration factors for the post-development conditions remain the same (same as pre-development conditions). However, under the post-development conditions, building footprint and parking lots and other paved areas, including drive ways will become impervious. Therefore, the pervious area post-development will be reduced by approximately 60%, which is approximately 99,000 m² (9.9 ha). Accordingly, the annual recharge volume is anticipated to be reduced by 12,600 m³ per year. The annual recharge volume changes under pre- and post-development conditions are summarized in **Table 6-1**.

Parameter	Unit	Pre- Development	Post- Development	Difference
Pervious Area	Square Meters (m ²)	165,000	66,000	-99,000
Impervious Area	Square Meters (m ²)	0	99,000	+99,000
Total area	Square Meters (m ²)	165,000	165,000	0
Annual Surplus	Millimeters	211	211	0
Infiltration Factor (pervious area)	-	0.6	06	0
Recharge Rate (pervious area)	Millimeters/year	127	127	0
Recharge Volume	Cubic Meters (m ³)/year	20,900	8,300	-12,600

Table 6.1: Annual Recharge Volumes - Pre- and Post-Development

7 Development Considerations

Based on the current site conditions and the results of the hydrogeological investigation and environmental site assessment, considerations should be given during the site development to address the constraints and reduce the environmental footprint of the Project.

7.1 Groundwater Recharge Management

The main consideration is to minimize the footprints of the buildings and structures, parking lots and other pavement areas including roads and driveways to the extent practicable to reduce the impact of surface hardening on the groundwater recharge.

Other mitigation measures to reduce this impact include, but are not limited to, minimizing ground disturbance areas during construction and implementing low impact development (LID) or green stormwater practices and management systems during the design of the facility.

Dewatering effluent, if meets the PWQO, should be considered first discharging to the natural environment and recharging the groundwater in the shallow water bearing zone.

7.2 Potential Contaminants of Concern

During the Phase II ESA completed by SNC-Lavalin between June and October 2019, groundwater samples collected from ten (10) newly installed monitoring wells were submitted for laboratory analyses of one (1) or more of benzene, toluene, ethylbenzene, xylenes (collectively referred to as BTEX), volatile organic compounds (VOCs), petroleum hydrocarbons (PHC) fractions F1 to F4, herbicides/pesticides, polycyclic aromatic hydrocarbons (PAHs) and metals/inorganics (including Cr6+, Hg, free cyanide and chloride).

The results indicated, concentrations of molybdenum exceeded the MECP Table 8 standards in two (2) monitoring wells (MW-35 and MW-70) during the groundwater sampling event in June 2019. The results from the remaining monitoring wells satisfied the applicable site condition standards (Table 8 Standards).

The identified areas of potential contaminants of concern are provided in Appendix I.

7.3 Opportunities and Constraints

Opportunities

The Region of Peel is responsible for the supply and distribution of municipal drinking water throughout the Region including the City of Brampton. For the urban areas in the southern part of Peel Region including Brampton, drinking water is supplied under the South Peel Servicing System. This is accomplished through a system of trunk feeder-mains, storage reservoirs and pumping stations. The new development can obtain water supply via the South Peel Servicing System. The existing watermain trunks pass through the project area along Highway 50. Development which is dependent upon a significant level of water-taking may be subject to the approval of a hydrogeological investigation/study. However, this development is not expected to require a significant amount of water supply. The existing water supply system should be sufficient (have the capacity) to provide enough water for this development.

Sanitary sewer services are the responsibility of the Region of Peel and are implemented in part through agreements with the Province of Ontario. Two (2) major water pollution control plants (wastewater treatment system) are located in the City of Mississauga near Lake Ontario that treat sewage collected from the South Peel Service Area which includes the Cities of Mississauga, Brampton and part of the Town of Caledon. The City of Brampton expects that the Region of Peel will provide appropriate and timely sanitary sewerage facilities to serve the City's development subject to some principles and policies. The existing sanitary trunk sewers pass through the project area along Highway 50.

With the existing infrastructure (utilities and services) in place, the opportunities are, after the development, the Site will be serviced by the Region of Peel municipal drinking water supply system and be connected to the Region of Peel sanitary sewer system. Therefore, there would be no need to consider and assess on-site water supply (wells) and sewage works (septic systems) and associated impacts for this development in terms of water planning and management.

Constraints:

Although opportunities exist, there are some constraints that the development may be facing during the construction and operation phases. The potential constrains are summarized as follows:

- During construction, short-term discharge of water from dewatering may be released to the natural environment or directed to the Region of Peel or the City of Brampton sewer systems. In this case, the discharge water quality needs to meet PWQO or the sewer discharge limits and water treatment may be needed.
- Considering the relatively shallow groundwater table and fine textured soil conditions encountered at the Site, the design of long-term foundation drains (i.e., French drain or soak-away pit, etc.), if needed, should consider the requirements for the minimum groundwater table clearance (at least 1 m below the bottom of the infiltration trench or soak-away pit) and the minimum infiltration rate (should be greater than 15 mm/h).
- If the design opts to use dewatering (pumping) for the long-term foundation drains, detailed dewatering assessment is needed to determine the long-term dewatering rate. In this case, the sewer capacity should be reviewed and analyzed and an approval from the Region of Peel and/or the City Brampton is required for the connection to the existing infrastructure.
- Alternatively, the foundation design may consider water-proof measures to avoid long-term water discharge to the sewers.
- As a portion of the Site is located within the Rainbow Creek flooding areas, additional requirements from TRCA may need to be addressed during the detailed design of the Project.
- A suitable dewatering and groundwater management plan should be developed to address the identified groundwater contamination areas/plumes during the detailed design of the Project.

7.4 Mitigation Measures

Dewatering activities at the site should follow the Ontario Provincial Standard Specifications (OPSS) 517 - Dewatering of Pipeline, Utility, and Associated Structure Excavation and OPSS 518 - Construction Specification for Control of Water from Dewatering Operations.

Erosion and Sediment Control (ESC) measures (e.g. OPSS 805, Construction Specification for Temporary Erosion and Sediment Control Measures) should be incorporated into design and implemented during construction to prevent erosion and soil migration from the site.

Based on the existing infrastructure available near the Site, extracted water from dewatering can be directed to a sediment settling tank first, then through a discharge pipe and filter bag, prior to releasing to the natural environment (i.e., an undisturbed vegetated area located a minimum of 30 m away from all water bodies, wetlands, and drainage features) or discharging to the City of Brampton or Region of Peel sewer systems. The settling tank is expected to serve as a pre-treatment system to dissipate energy, reduce the levels of TSS and some metals in water. Additional water treatment methods may be required if the water quality does not meet the applicable criteria or discharge limits after the settling tank. In this case, an ECA may be required from the MECP for the treatment system.

In addition, appropriate mitigation measures should be implemented to prevent and/or contain leakage from onsite equipment and machines during construction and operation.

7.5 Monitoring and Sampling Plans

Mitigation measures and monitoring plans that may be required as part of the discharge permit issued by the City of Brampton, the Region of Peel and/or local conservation authorities should be implemented. If no such requirements are available, a site-specific water quality monitoring and sampling plan should be developed and implemented. Discharge water quality should be monitored and tested prior to and during construction to ensure that the discharge water quality meets the applicable criteria or discharge limits. The suggested discharge water quality monitoring plan and mitigation measures are as follows:

Water Quality Monitoring Frequency and Location

- > One round of water quality sampling and laboratory analysis for each dewatering location, immediately after the dewatering (pumping) system is set up.
- > For dewatering effluent pre-treated using a settling tank, the water samples can be taken from the dewatering discharge point and submitted for laboratory analysis.
- Following the discharge effluent directed to an energy dissipation/ sediment filtering measure (e.g. filter bag) in a vegetated discharge location at least 30 m from a watercourse or waterbody, surface sampling should be conducted at predetermined upstream and downstream locations of the release point.
- Water clarity observations and turbidity meter readings (including the presence of any sheen, odour or film) can be conducted on a daily basis during dewatering activities. All inspection and monitoring observations and results will be recorded.
- When contaminants of concern/exceedances are identified, a confirmatory sample shall be taken, and the results will be reviewed by a qualified person.
- > If any further treatment/mitigation is to be added, another sample shall be taken to confirm the guidelines are met.
- > If no exceedance or issues are identified, then continue to inspect the system and monitor turbidity readings on a daily basis.
- > Following the initial laboratory sampling event, the sampling will be conducted once a week within the first month, then monthly thereafter.

Parameters

- General chemistry, nutrients, total metals, TSS, turbidity and identified contaminants of concern.
- If no exceedances identified, continue to observe water clarity/characteristics, and test TSS/Turbidity only.

Triggers for Action

Exceed the PWQO, or TSS 25 mg/L (or field measuring of turbidity 15 NTU or correlated turbidity value equivalent to TSS 25 mg/L established during the previous sampling events), or City of Brampton or Region of Peel Sewer discharge limits.

Water Treatment Measures

> Pre-treatment including, but not limited to sediment settling, equalization, micron or sand filters, bag filters and/or activated carbon vessels, etc.

8 Conclusions and Recommendations

- Based on the results of the dewatering assessment, the typical and maximum daily dewatering rates were estimated to be in the order of 94,300 L/day and 188,600 L/day, respectively. As based on the worst-case scenario, the maximum daily dewatering rate will likely be less than 400,000 L/day (but more than 50,000 L/day), an EASR registration is recommended for the Project.
- During construction, short-term discharge of water from dewatering may need to be released to the natural environment or directed to the Region of Peel or the City of Brampton sewer systems. In this case, the discharge water quality needs to meet PWQO or the sewer discharge limits. Water treatment may be needed.
- It appears that private properties in the project study area are being supplied by the municipal drinking water supply system. It is expected that private water supply wells are not being used (most of them were confirmed during the well survey) in the surrounding areas.
- Minimal impacts to local groundwater users and surface water features are expected due to the proposed dewatering activities.
- The water balance analysis indicated that the annual recharge volume to groundwater after the Site development will be reduced by approximately 12,600 m³ per year, compared to the predevelopment recharge volume (without any mitigation measures).
- Appropriate mitigation measures should be implemented to prevent and/or contain any leakage from on-site equipment and machines during construction. Refuelling of pumps and equipment should be conducted away from excavations and dewatering operations.
- Any monitoring and mitigation measures that are required by the authorities should be implemented. If no such sampling requirements are available, the monitoring plan as described in Section 7.5 can be considered. Discharge water quality should be tested and monitored prior to and during construction to ensure that the discharge water quality meets the applicable PWQO or sewer discharge limits.

9 References

Cole Engineering Group Ltd., 2014. Rainbow Creek Master Plan Update Study, the City of Vaughan. June 2014

City of Brampton, 2015. Official Plan, Schedule D Natural Heritage Features and Areas, August 10, 2015.

C.W. Fetter, 2001. Applied Hydrogeology. Fourth Edition.

Gregory J. McCabe and Steven L. Markstrom, (U.S. Department of the Interior, U.S. Geological Survey), 2007. A Monthly Water-Balance Model Driven By a Graphical User Interface. 2007.

J. Patrick Powers, Arthur B. Corwin, Paul C. Schmall, Walter E. Kaeck, 2007. Construction Dewatering and Groundwater Control: New Methods and Applications, Third Edition, Chapter 6 Dewatering Design Using Analytical Methods.

Ministry of the Environment, Conservation and Parks, 2020. Source Protection Information Atlas. <u>https://www.gisapplication.lrc.gov.on.ca/SourceWaterProtection/Index.html?site=SourceWaterProtection&viewer=SWPViewer&locale=en-US</u>

SNC-Lavalin Inc., 2019a. Geotechnical Investigation: Proposed Johnston Transit Facility (Transit Bus Garage), 10192 Highway 50, Brampton, Ontario. November 15, 2019.

SNC-Lavalin Inc., 2019b. Phase Two Environmental Site Assessment, 10192 Highway 50, Brampton, Ontario. November 20, 2019.

Toronto and Region Conservation Authority, 2008. Humber River, State of the Watershed Report, Geology and Groundwater Resources, Surface Water Quality. 2008.

SNC-LAVALIN INC.

SIMO

Wuzhou (Wilson) Liu, P. Geo. Project Hydrogeologist Environment & Geoscience

Leon Burger, P. Geo. Senior Project Manager, Hydrogeologist Environment & Geoscience

Figures

Figure 3: Primary and secondary Humber River Subwatersheds (TRCA, 2008)

Figure 4: Physiographic Regions in the Humber River Watershed (TRCA, 2008)

Figure 6: Estimated Groundwater Recharge Rates; mm/year (Earthfx, 2008)

Figure 8: Well Head Protection Areas - MECP Source Protection Plan on-line Maps (MECP, 2020)

Figure 9: Highly Vulnerable Aquifers - MECP Source Protection Plan on-line Maps (MECP, 2020)

Appendix A

Site Plan Concept

Appendix B

Borehole Location Plan and Borehole/Well Logs

ent:	City of Brampton						Drilling	g Method:	<u>150 mm Ho</u>	bllow Stem Augering		(Compiled by: <u>NT</u>
oject Name:	Phase II Environmental Site A	ssess	ment				Drilling	g Machine:	Track Moun	ted Drill		I	Reviewed by: MT
cation:	10192 Hwy 50, Brampton, ON						Date	Started:	Jun 10, 201	9 Date Completed: Jun	10, 2019	<u> </u>	Revision No.: 0
LITH		SO	IL SA	MPLI	NG			FIELD	TESTING	LAB TESTING	7	EAS	TING: 606377.19
	DESCRIPTION	ple Type	ple Number	very (%)	'N' Value	(m) H	(ATION (m)	Penetrat O SPT MTO Vane* △ Intact ▲ Remould	ion Testing ● DCPT Nilcon Vane* ◇ Intact ◆ Remould		RUMENTATION ALLATION	t Weight (N/m3)	HING: 4852223.96 COMMENTS
Local Ground	Surface Elevation: 210.12 m	Sam	Sam	Reco	SPT	DEP	ELEY	* Undrained Sh 20 40	ear Strength (kPa) 60 80	W _P 20 40 60 80	INST	Ъ.	
Loose crush ~460 mm. FILL	ied stone / asphalt pieces 209.7 0.5	SS	01	75			210 -			o ²²			Top of Riser Elevation = 211.00 m; Height of Riser =0.90 m Sample submitted for
Brown, firm, sand, trace	silty CLAY, trace to some gravel, moist.	SS	02	84	4	- - 1 -	209 -	0		o ²⁴			BH02-01 PP = 1.0 kg/ sq-cm Sample submitted for laboratory analysis:
NATIVE TIL	208.6 L 1.5												BH02-02 PP = 3.5 kg/ sg-cm
Brown, very gravel, wet.	stiff, sandy silty CLAY, trace	SS	03	100	19	- 2	208 -	0		0 ¹⁶			
becomes ox	idized, hard	SS	04	100	62		-		0	o ¹¹			PP = 1.5 kg/ sq-cm
trace broker	n cobble pieces	SS	05	100	58	3	207 -		0	ి			PP = 1.5 kg/ sq-cm
						- - - - - - - -	206 -						
		SS	06	33	39	- - - - - - - - - - - - - - - - - - -	205 —	0		o ⁹			
		SS	07	100	61	6	204 —		O	o ¹²			Sample submitted for laboratory analysis: BH02-07
	202 5					- 7 - 7 	203 -						
Grey, comparing trace gravel	act, SAND to silty SAND, 7.6 , wet.	SS	08	100	22	- 8	202 —	0		o ¹²	.		
						- - - - - - 9	201						
very dense	200.4	SS	09	100	94				0	o ¹⁰	· · · · ·		PP = 3.0 kg/ sq-cm
End of borel Notes: 1. Borehold at 9.14 r at 5.64 r 2. Water ta complet stem au 21, 2019 3. PP = po	hole. 9.8 e was found to be caved-in nbgs with freestanding water nbgl upon completion. ble was measured upon ion of drilling inside the hollow ger on June 24 and October O. cket penetrometer.												
))	$\sum_{i=1}^{n}$ Groundv	vater de	pth on	comple	tion of	 drilling	g: <u>5.64</u>	Lm		Cave in depth record	led on cor	npletior	n of drilling: <u>9.14 m</u> .

RI	ECORD	OF BORE	HOLE N	lo.	<u>BH</u>	<u>02B</u>	<u>/MV</u>	<u>V02</u>	B									
Pro	ject Number:	665125							Drilling	g Locatio	on: <u>A</u>	s per bore	hole loca	tion plan		L	ogged by:	ABK
Clie	nt:	City of Bramptor	1						Drilling	g Metho	d:	200 mm Ho	ollow Ste	m Augering		(Compiled by:	NT
Pro	ject Name:	Geotechnical Inv	vestigation-Jo	hnstor	Trans	sit Faci	lity		Drilling	g Machii	ne: <u>T</u>	rack Moun	ted Drill			F	Reviewed by: I	мт
Loc	ation:	Brampton							Date S	Started:	-	Jun 19, 201	19 Date 0	Completed: Ju	n 19, 2019	<u>9</u> F	Revision No.:	0
	LITH	OLOGY PROFIL	E	SO	IL SA	MPLI	NG			FIE	LD TE	STING	LAE	B TESTING	z	EAS	TING: 606376.	904
					۲.				- -	Per	netratior	Testing	★ Rinse 2 4 Soil V	pH Values 6 8 10 12 (apour Reading	ATIO	NORT	HING: 4852222	2.77
thology Plot		DESCRIPTION		ample Type	ample Numbe	ecovery (%)	PT 'N' Value	EPTH (m)	LEVATION (n	MTO V △ Intac ▲ Rem * Undrain	ane* f t < iould ed Shear	DCP1 Vilcon Vane* Intact Remould Strength (kPa)	△ parts p 100 ▲ Lower ★ Pass ○ Moistur Att	200 300 400 Explosive Limit (LEL ing 75 um (%) e Content (%) erberg Limits	() ISTRUMENT	Unit Weight (KN/m3)	COMME	NTS
Li	Local Ground FILL	Surface Elevation:	210.16 m	S	Ś	2	S		210 –	20	40	60 80	20	40 60 80			Top of Riser El	evation =
	Dark black, moist. Reddish bro	dense, SAND and	I GRAVEL, <u>209.5</u> AND, trace0.6	SS	01	70	35		-		0						0.76 m Small roots thro	oughout.
	clay, moist.	RATA	208.9	SS	02	67	8	- 1 	209 —	0								
	Reddish bro	wn, stiff, slty CLA' to wet.	Y, some	SS	03	87	10		-	0								
	some clay, i	noist.	, o, ind., 1.0	SS	04	84	85	2	208 -			0						
	becomes lig	ht reddish brown	207 4	SS	05	100	95		-			С						
	NATIVE TIL Dark reddis SAND, som	L h brown, very dens e clay, moist to we	3.1 se, silty et.	SS	06	67	150 mm	- 3	207 -								Some black gra	anular.
				SS	07	100	50 / 150		-									
	Light brown CLAY, wet.	to grey, hard, san	<u>205.9</u> dy silty 4.3	SS	08	31	50 / 130 mm	- 4 - - - -	206 -						—		Low recovery.	
				SS	09	87	57	5	205 -			0						
				SS	10	35	61 / 280 mm		-								Some small roo Low recovery.	cks.
				SS	11	100			204 -									
	Dark grey, v wet.	ery dense, sandy	203.4 GRAVEL, 6.7	SS	12	74	72	- - - - - 7	203 -			0					Low recovery.	
₹ ₩ ₩ ₩ ₩ ₩				SS	13	100	33	-	-		0							
				SS	14	56	56	8	202 -		(C					Minor outer bla staining	ck and wet
				SS	15	0	50 / 125 mm		-								some sand. No recovery.	use clay
	Grey, hard,	silty CLAY, some	201.0 sand, trac e .1	99	16	QR	87 / 255	- 9	201 -									
¥/X	gravel, wet. End of bore	hole.	200.6 9.6	- 55	10	50	mm	-	-									
	Notes:																	
	1. Borehol and no f	e was found to be reestanding groun	open nd water															
	2. Water ta upon co the hollo October	able was measured mpletion of drilling w stem auger and 21,2019.	d j inside l on															
Chie)		⊻ No freest	anding	ground	lwater r	neasure	ed in o	pen bor	ehole up	on com	pletion of dr	illing.					
401 Vaug	Hanlan Rd	4L 3T1	Borehole details	as preser Seotechn	pth obs nted, do ical Engi	not const neer. Als	itute a th	orough	understa	pth of: nding of al nould be re	4.48 Il potentia ad in con	<u>m</u> . al conditions pr njunction with	resent and re the geotechr	equires interpretative	e assistance n it was		Sc	cale: 1 : 63
ı el:	ອບວ-ช51-0090		commisioned and	u trie acci	ompanyi	ng Notes	IO RECOR	u of Boi	renoles'.								Pag	je: 1 of 1

R	ECORD	OF BOREHOLE N	lo.	<u>BH</u>	<u>03/N</u>	<u>/W</u>	<u>)3</u>							
Pro	ject Number:	665125						Drilling	g Location:	As per borel	nole location plan		I	_ogged by: MF
Clie	ent:	City of Brampton						Drilling	g Method:	150 mm Ho	llow Stem Augering		(Compiled by: <u>NT</u>
Pro	ject Name:	Phase II Environmental Site A	ssess	ment				Drilling	g Machine:	Track Mount	ted Drill		F	Reviewed by: MT
Loc	ation:	10192 Hwy 50, Brampton, ON						Date	Started:	Jun 10, 201	9 Date Completed: Jun	10, 2019	<u>)</u> F	Revision No.: 0
	LITH		SO	IL SA	MPLI	NG			FIELD	TESTING	LAB TESTING	7	EAS	TING: 606450.93
				_				_	Penetrat	ion Testing	★ Rinse pH Values 2 4 6 8 10 12	TIO I	NORT	HING: 4852124.65
olot		DESCRIPTION	be	umbe	(%)	alue		E) Z	O SPT	 DCPT Nilcon Vane* 	△ parts per million (ppm) 100 200 300 400		ght	
ogy F			ole T ₎	ole N	very	N' V	ш, Н	ATIO	 △ Intact ▲ Remould 	 ♦ Remould 	 Lower Explosive Limit (LEL) * Passing 75 um (%) Moisture Content (%) 	ALLA	t Wei (N/m	COMMENTS
Lithol	Local Ground	Surface Elevation: 208.90 m	Samp	Samp	Reco	SPT -	DEPT	ELEV	* Undrained She 20 40	ear Strength (kPa) 60 80	Atterberg Limits W _P 0 40 60 80	INST INST	лі Э	
	Loose crush	ned stone / asphalt pieces~					-							Top of Riser Elevation = 209.81 m:
	FILL	<u>208.4</u> 0.5	55	01	/5		Ē					ž		Height of Riser= 0.92 m PP = 2.0 kg/ sq-cm
	Brown to lig	ht brown, stiff, silty CLAY, moist					E	208 -						Sample submitted for laboratory analysis:
	g	,	SS	02	84	8	- 1 -	200	0					BH03-01 PP = 3.0 kg/ sq-cm Sample submitted for
							È							laboratory analysis: BH03-02
							Ē	007						PP = 4.0 kg/ sq-cm
	becomes o	lidized, some sand.	SS	03	100	9	E 2	207 -	0					
61	NATIVE TIL	<u> </u>					E							PP = 3.0 kg/ sq-cm
	CLAY, trace	sand, trace gravel, oxidized,	SS	04	100	40		-	0					
	moist.						- 3	206 -				Y		PP = 4.5 kg/sg-cm
	fine sand at	bottom.	SS	05	75	26	-	-	0					
	Brown to br	wnish grey, compact, SAND,6					Ē							
	trace gravel	, silty clay seams, moist.	66	06	75	24	4	205 -						
			- 33	00	/5	24	È							
ĺф	becomes ve	ery dense.	SS	07	-0	50/ 50 mm	È							Sample submitted for laboratory analysis:
		,					- 5	204 -						BH03-07
Ϋ́.							F							
	b		SS	08	75	28	Ē	-	0					
16	becomes co	impact, wet.					-	203 -				ΙE		
							Ē							
Ĭ.		202.2	SS	09	33	17	Ē	-	0					
	End of bore	hole. 6.7												Auger refusal.
	Notes:													
	1 Borehol	e was found to be caved-in												
	at 5.94	mbgs with freestanding water												
	2. Water t	able was measured upon												
	stem au	ger on June 24 and October												
	3. PP = po	cket penetrometer.												
														<u> </u>
	2	Groundw	ater de	pth on	comple	tion of	drilling	g: <u>4.57</u>	<u>m</u>		Cave in depth record	ed on co	mpletior	n of drilling: <u>5.94 m</u> .
SNO 401	Hanlan Rd		ater de	ptn obs	served c	on <u>21/</u>	10/201	≝ at a de	nding of all poter	13 M.	esent and requires interpretative a	esietanco		
Vau Tel:	ghan, Ontario L 905-851-0090	4L 3T1 from a qualified 0 commisioned and	Geotechn d the acc	ical Engi ompanyi	ng'Notes	o, boreh to Reco	ole info rd of Bo	rmation sloveholes'.	nould be read in	conjunction with t	he geotechnical report for which it	t was		Scale: 1 : 63
1														Page: 1 OT 1

RI	ECORD	OF BOREHOLE N	lo.	<u>BH</u>	<u>22/I</u>	<u>/W</u>	<u>22</u>							
Pro	ject Number:	665125						_ Drilling	g Location:	As per borel	hole location plan		L	_ogged by: MF
Clie	ent:	City of Brampton						_ Drilling	g Method:	150 mm Ho	llow Stem Augering		(Compiled by: <u>NT</u>
Pro	ject Name:	Phase II Environmental Site A	ssess	ment				_ Drilling	g Machine:	Track Mount	ted Drill		F	Reviewed by: MT
Loc	ation:	10192 Hwy 50, Brampton, ON						Date S	Started:	Jun 12, 201	9 Date Completed: Jun	12, 2019	<u>)</u> F	Revision No.: 0
	LITH	OLOGY PROFILE	SO	IL SA	MPLI	NG			FIELD	TESTING	LAB TESTING	z	EAS	TING: 606347.46
				۲.				2	Penetrat	ion Testing	★ Rinse pH Values 2 4 6 8 10 12 Soil Vapour Peading	ATIO	NORT	HING: 4852093.13
ithology Plot	Local Ground	DESCRIPTION	Sample Type	sample Numbe	Recovery (%)	SPT 'N' Value	DEPTH (m)	ELEVATION (m	O SPI MTO Vane* △ Intact ▲ Remould * Undrained Shu	DCP1 Nilcon Vane* Intact Remould ear Strength (kPa) 80	A parts per million (ppm) 100 200 300 400 Lower Explosive Limit (LEL) * Passing 75 um (%) Moisture Content (%) Atterberg Limits W _P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NSTRUMENT, NSTALLATION	Unit Weight (KN/m3)	COMMENTS
_	Loose crush ~760 mm.	hed stone / asphalt pieces	SS	01	67			210 -						Top of Riser Elevation = 211.08 m; Height of Riser= 0.86 m
	NATIVE TIL Brown, stiff, some grave	209.5 L 0.8 sandy silty CLAY, trace to I, oxidized, moist.	SS	02	75	11	- - - - - - - - -	209 —	0					PP = 3.5 kg/ sq-cm
	becomes ha	ard	SS	03	100	31		-	0					Sample submitted for laboratory analysis:
	trace broker	n cobbles	ss	04	67	75		208 -		0				BH22-03 PP = 4.5 kg/ sq-cm
								207 -						
				05	100	60		-		0				PP = 4.5 kg/ sq-cm
	oxidized co	es	SS	06	100	44		206 —	C)				PP = 4.5 kg/ sq-cm
	becomes gr	ey, gravelly sand pockets.	SS	07	84	72	5	205 -		0				PP = 4.5 kg/ sq-cm
	becomes ve	ery stiff.	SS	08	100	29		-	0					Sample submitted for laboratory analysis: BH22-08
		203.5	SS	09	100	27		204 -	0					
	End of bore	hole. 6.7												
	Notes: 1. Borehol with no complet 2. Water ta stem at 21, 2019 3. PP = po	e was found to be open freestanding water upon ion. able was measured upon ion of drilling inside the hollow uger on June 24 and October 3. cket penetrometer.												
	3	$\frac{\nabla}{\Xi}$ No frees	anding	ground	lwater r	neasur	ed in o	pen bor	ehole upon co	mpletion of dri	lling.			
SNC	LAVALIN	Groundw	ater de	pth obs	erved o	on <u>21/</u>	10/201	<u>9</u> at a de	epth of: <u>0.</u>	<u>76m.</u>				
401 Vauo Tel:	Hanlan Rd ghan, Ontario L∙ 905-851-0090	4L 3T1 Borehole details from a qualified (commisioned and	as presei Seotechn d the acc	nted, do ical Engi ompanyi	not const ineer. Als ng'Notes	titute a tl o, boreh to Reco	norough ole info rd of Bo	n understa rmation sl preholes'.	nding of all pote nould be read in	ntial conditions pr conjunction with t	esent and requires interpretative a he geotechnical report for which i	assistance t was		Scale: 1 : 63 Page: 1 of 1

Nient:	City of Bramston						Drilling	Location:	150 mm U-			L	Compiled by: NT
roject Name:	City of Brampton Phase II Environmental Site A	55955	ment				Drilling	Machine:	Track Mount	now Stem Augering		(Complied by: <u>NT</u>
ocation:	10192 Hwy 50, Brampton, ON	00000	mont				Date S	tarted:	Jun 11. 2019	Date Completed: Jun ²	11. 2019		Revision No.: 0
		50			NG			EIEI D.					THO 000440 57
		30						Penetrat	ion Testing	★ Rinse pH Values 2 4 6 8 10 12	NOI	EAS NORT	HING: 4851932.58
finite Local Ground	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value	DEPTH (m)	ELEVATION (m)	O SPT MTO Vane* △ Intact ▲ Remould * Undrained Shi 20 40	DCPT Nilcon Vane* Intact Remould ear Strength (kPa) 60 80	Soil Vapour Reading △ parts per million (ppm) 100 200 300 400 ▲ Lower Explosive Limit (LEL) ¥ Passing 75 um (%) O Moisture Content (%) W _P 20 40 60 80	INSTRUMENTAT INSTALLATION	Unit Weight (KN/m3)	COMMENTS
Topsoil ~20 FILL Brown, firm,	0 mm. 208.3 0.2 , silty CLAY, trace gravel,	SS	01	84	5	-	208 -	0					Top of Riser Elevation = 209.36 m; Height of Riser=0.88 m
MOIST.	207.7 L 0.8 sandy silty CLAY, trace to I, some oxidation, moist.	SS	02	100	12	- - - - - - - -		0		Þ			laboratory analysis: BH30-01 PP = 1.5 kg/ sq-cm PP = 2.0 kg/ sq-cm Sample submitted for
becomes ha	ard	SS	03	100	33	- - - - - - 2	207	0					laboratory analysis: BH30-02 PP = 3.5 kg/ sq-cm
		SS	04	133	50		206		0				PP = 4.5 kg/ sq-cm
XXX		SS	05	100	44	- 3	205 –	C					PP = 3.5 kg/ sq-cm
		SS	06	100	40	4	204 —	O					PP = 4.0 kg/ sq-cm
becomes br	ownish grey, very stiff.	SS	07	100	28	- 		0					PP = 3.5 kg/ sq-cm
SAND, wet.	dense, gravelly SAND to 5.3	SS	08	100	50/ 125 mm	- - - 6	203 —						Sample submitted for laboratory analysis: BH30-08
End of bore Notes: 1. Borehold at 6.10 r water at 2.Water tab complet stem au 21, 201 3. PP = po 4. GR., SA Sand, S	e was found to caved in mbgs with freestanding 5.18 mbgs upon completion. le was measured upon ion of drilling inside the hollow ger on June 24 and October 9. cket penetrometer. , SI. & CL. denote Gravel, ilt & Clay respectively.												
C · LAVALIN Hanlan Rd ughan Ontario La		ater de ater de	pth on pth obs	completerserved const	tion of c on <u>21/</u>	drilling: 10/2019 lorough	5.18 2 at a depunderstar	m oth of: <u>3.</u> ding of all pote	<u>16 m</u> . Itial conditions pre	Cave in depth records esent and requires interpretative a content of the sector of	ed on col	mpletion	of drilling: <u>6.1 m</u> .

lie	nt: City of Brampton						Drilling	g Method:	200 mm Ho	llow Stem Augering		(Compiled by: <u>NT</u>
roj	ject Name: Phase II Environmental Site A	ssess	ment				Drilling	g Machine:	Track Mount	ted Drill		F	Reviewed by: MT
oca	ation: 10192 Hwy 50, Brampton, ON						Date	Started:	Jun 12, 201	9 Date Completed: Jun	19, 2019	. F	Revision No.: 0
	LITHOLOGY PROFILE	SO	IL SA	MPLI	NG			FIELD	TESTING	LAB TESTING	z	EAS	TING: 606355.8
5	DESCRIPTION	ample Type	ample Number	tecovery (%)	sPT 'N' Value	JEPTH (m)	EVATION (m)	Penetrati ○ SPT MTO Vane* △ Intact ▲ Remould * Undrained She	on Testing • DCPT Nilcon Vane* • Intact • Remould ara Strength (kPa)		NSTRUMENTATIO NSTALLATION	Unit Weight (KN/m3)	HING: 4852008.7
	Loose overbourden asphalt~ 760 mm.	05	0	<u>u</u>	0)		<u> </u>	20 40	80 80	20 40 60 80			Top of Riser Elevation = 210.77 m:
	209.2	SS	01	52									Height of Riser =0.92 m
	NATIVE TILL 0.6 Light brown, very stiff, sandy silty CLAY, some silt, moist.	SS	02	64	15	- - 	209 -	0					Sample submitted for laboratory analysis: BH33-02
		SS	03	100	17		208 -	0					Sample submitted for laboratory analysis:
	hard	SS	04	100	37	- 2	-	0					вназ-03
	Vor stiff	SS	05	100	30		207 -	0					
	very Sun	SS	06	85	20		200	0					
	becomes hard	SS	07	100	58	4	206 -		0				Sample submitted for laboratory analysis: BH33-07
		SS	08	72	61		205 -		0				
	some sand pockets	SS	09	31	36		-	0					
		SS	10	100	33	- 6	204 -	0					
/////	trace to some sand.	SS	11	100	32		203 -	0			· · · · · · · · · ·		
	End of borehole. 7.3	SS	12	100	58	- 7	-		0		· · · · · · · · · ·		
	 Borehole was found to be open with no freestanding water upon completion. Water table was measured upon completion of drilling inside the hollow stem auger on June 24 and October 21, 2019. 												
		andiar	are	huoto			nonka		mulation of dat	ling			

R	ECORD	OF BOREHO	LE N	о.	<u>BH</u>	<u>35/N</u>	<u>/W:</u>	<u>35</u>							
Pro	ject Number:	665125							Drilling	g Location:	As per bore	nole location plan		L	.ogged by: MF
Clie	ent:	City of Brampton							Drilling	g Method:	150 mm Ho	llow Stem Augering		(Compiled by: <u>NT</u>
Pro	ject Name:	Phase II Environmenta	al Site A	ssess	ment				Drilling	g Machine:	Track Mount	ted Drill		F	Reviewed by: MT
Loc	ation:	10192 Hwy 50, Brampt	on, ON						Date S	Started:	Jun 12, 2019	9 Date Completed: Jun	12, 2019	F	Revision No.: 0
	LITHO			SO	IL SA	MPLI	NG			FIELD	TESTING	LAB TESTING Rinse pH Values	Z		TING: 606263.02
Lithology Plot	Local Ground	DESCRIPTION Surface Elevation: 209.2	24 m	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value	DEPTH (m)	ELEVATION (m)	Penetrat ○ SPT MTO Vane* △ Intact ▲ Remould * Undrained Shu 20 40	ion Testing ● DCPT Nilcon Vane* ◇ Intact ◆ Remould bar Strength (kPa) 60 80	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	INSTRUMENTATIC INSTALLATION	Unit Weight (KN/m3)	COMMENTS
	_ Topsoil ~150) mm.	209.1 0.2	22	01	67	3	_	209 —						Top of Riser Elevation = 210.09m;
nr	Brown, soft, moist.	silty CLAY, trace grave	l, 208.5 0.8		01	07	3		-						Height of Riser= 0.90 m PP = 0.5 kg/ sq-cm
	Brown, stiff t trace gravel,	o very stiff, sandy silty (some oxidation, moist.	CLAY,	SS	02	100	10		208 -	0					PP = 3.0 kg/ sq-cm
				SS	03	100	27	2	207 —	0					Sample submitted for laboratory analysis: BH35-03 PP = 4.0 kg/ sq-cm
	becomes ha	rd		SS	04	100	32			0					PP = 4.5 kg/ sq-cm
				SS	05	100	38		206 -	0					PP = 3.0 kg/ sq-cm
				SS	06	0	31	- 4 - 4 	205 —	0					
	becomes bro	ownish grey, stiff.		SS	07	100	14	- - - - - - - -	204 —	0					Sample submitted for laboratory analysis: BH35-07
	becomes ve	ry sun.		SS	08	0	20		-	0					
				SS	09	67	20		203 -	0					PP = 3.5 kg/ sq-cm
	Grey, very d	ense, silty SAND, trace le pieces, moist.	<u>201.6</u> clay7.6	SS	10	67	50/ 150 mm		202 —						
0 0 č									201						
			199.5	SS	11	100	58		200 -		0		· · · · ·		PP = 4.5 kg/ sq-cm
	 End of boref Notes: Borehole with no f completi Water ta completi hollow st and Octor 	nole. e was found to be open reestanding water upon on. ble was measured upor on of drilling inside the tem auger on June 24 ober 21, 2019.	9.8 n												
14))	Σ	No freest	anding	ground	lwater n	neasur	ed in o	pen bor	ehole upon co	mpletion of dril	lling.	. 1		
SNO	LAVALIN	 	Groundw	ater de	pth obs	erved o	on <u>21/</u>	10/201	<u>9</u> at a de	pth of: <u>2.</u>	<u>39 m</u> .				
401 Vau Tel:	Hanlan Rd ghan, Ontario L4 905-851-0090	L 3T1 Boreh from a comm	ole details a qualified G isioned and	eotechn the acc	nted, do i ical Engi ompanyi	not const neer. Als ng'Notes	titute a th o, boreh to Reco	norough ole info rd of Bo	understa rmation sh reholes'.	nding of all pote hould be read in	ntial conditions pre conjunction with th	esent and requires interpretative a he geotechnical report for which it	ssistance was		Scale: 1 : 63

rojec	ct Number:	665125							g Location.	As per borer	lole location plan		I	logged by: MF
lient	:	City of Brampton						Drilling	g Method:	150 mm Ho	llow Stem Augering		(Compiled by: <u>NT</u>
rojec	ct Name:	Phase II Environmental Site A	ssess	ment				Drilling	g Machine:	Track Mount	ted Drill		F	Reviewed by: MT
ocati	ion:	10192 Hwy 50, Brampton, ON						Date S	Started:	Jun 11, 201	9 Date Completed: Jun	11, 2019	<u>)</u> F	Revision No.: 0
-	LITH		SO	IL SA	MPLI	NG			FIELD	TESTING	LAB TESTING	N	EAS	TING: 606376.62
to l (Roppi		DESCRIPTION	mple Type	mple Number	covery (%)	r 'N' Value	(m) HTH	EVATION (m)	Penetrat ○ SPT MTO Vane* △ Intact ▲ Remould * Undrained She	DCPT Nilcon Vane* A Intact Remould	A vities pi values 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 Lower Explosive Limit (LEL) # Passing 75 um (%) Moisture Content (%) Attreberg Limits	STRUMENTATIC STALLATION	Init Weight (KN/m3)	COMMENTS
	cal Ground	Surface Elevation: 208.99 m 50 mm. 208.8	Sa	Sa	Re	ß	<u> </u>	<u> </u>	20 40	60 80	W _P 20 40 60 80 W _L	≚≚ Ka Ka	_	Top of Riser Elevation =
F E t	FILL Brown, firm, trace to som	0.2 silty CLAY, trace gravel, ne sand, rootlets, moist.	SS	01	84	7		-	0					209.94 m; Height of Riser= 1.00 m PP = 2.0 Kg / sq.cm
			SS	02	100	7	- 1 	208 -	0					Sample submitted for laboratory analysis: BH51-02
N E	NATIVE TIL Brown, very	207.5 L 1.5 stiff, sandy silty CLAY, trace	SS	03	100	17		-	0					PP = 2.5 Kg / sq.cm PP = 4.0 Kg / sq.cm
n n	noist.	אסו, נומטה סמות, טאועוסבע,					- 2 - - -	207 —				Y		
		205.9 Se to very dense sandy SII 73.1	SS	04	100	17	3	206 -						
t	race gravel oxidised, mo	, trace to some sand, pist.	SS	05	100	30		-	0					PP = 4.5 Kg / sq. cm
			SS	06	100	125 mm	4	205 -						PP = 4.5 Kg / sq. cm
s	some grave	I	SS	07	33	48	- 5	204 —		D				
	GR: 23%; S	A: 26%; SI: 37%; & CL: 14%	SS	08	25	26		203 —	0					Sample submitted for laboratory analysis: BH51-08 PP = 4.5 Kg / sq. cm
		202.3	SS	09	100	38			0					
E	End of bore Notes:	hole. 6.7												
1 2 2 4	 Borehol 3.05 mb 4.72 mb Water tab complet stem au 21, 201 PP= Poi GR., SA Sand, S 	e was found to be caved in at gs with freestanding water at gs upon completion. le was measured upon ion of drilling inside the hollow ger on June 24 and October 9. cket Penetrometer. , SI. & CL. denote Gravel, ilt & Clay respectively.												
•)))	$\frac{\sum}{=}$ Groundw	vater de	pth on	complet	tion of c	drilling): <u>4.72</u>						
C·I	LAVALIN	E Groundw	ater de	pth obs	served c	on <u>21/</u>	10/201	<u>9</u> at a de	pth of: <u>2.17m</u>	6				

RI	ECORD	OF BOREHOLE N	lo.	<u>BH</u>	<u>51B</u>	<u>/MV</u>	V51	B						
Pro	ject Number:	665125						Drillin	g Location:	As per bore	hole location plan		L	ogged by: <u>ABK</u>
Clie	nt:	City of Brampton						Drillin	g Method:	200 mm Ho	ollow Stem Augering		(Compiled by: <u>NT</u>
Pro	ject Name:	Geotechnical Investigation-Jo	hnstor	n Trans	sit Faci	ility		Drillin	g Machine:	Track Moun	ted Drill		F	Reviewed by: MT
Loc	ation:	Brampton						Date	Started:	Jun 20, 201	9 Date Completed: Jun	20, 2019	<u>)</u> F	Revision No.: 0
	LITH	OLOGY PROFILE	sc	IL SA	MPLI	NG			FIELD	TESTING	LAB TESTING	-	EAS	TING: 606378.606
				L					Penetrat	ion Testing	★ Rinse pH Values 2 4 6 8 10 12	TION	NORTI	HING: 4851801.095
j		DESCRIPTION	be	Imbe	(%)	Ine		E z	O SPT	DCPT	△ parts per million (ppm) 100 200 300 400	TION	ght (
ogy F			le Ty	ole Nt	very	N' V	ш. Н	ATIO	△ Intact ▲ Remould	 Intact Remould 	▲ Lower Explosive Limit (LEL)	ALLA	t Wei	COMMENTS
Lithol	Local Ground	Surface Elevation: 209.01 m	Samp	Samp	Reco	SPT -	DEPT		* Undrained Sh 20 40	ear Strength (kPa) 60 80	$W_{P} = \frac{Atterberg Limits}{4000000000000000000000000000000000000$	INST INST	Ω Έ	
	Dark brown	, loose, SAND, some silt,					-					94 94 19 19		Top of Riser Elevation = 209.67 m: Height of Riser =
	moist.	208.4	55	01	66	8	-					-		0.66 m
	FILL Light brown	0.6 loose. silty SAND. trace		02	70	4	Ē							
	clay, moist.	207.8	- 33	02	19	4	- 1 -	208 -						
	NATIVE ST Light brown	RATA 1.2 , stiff to very stiff, sandy silty	ss	03	100	11	È							
	CLAY, trace	e gravel, moist.					F							
			ss	04	33	20	- 2 -	207 -	0					
							È							
			ss	05	100	20	-		0					Brink orange stainning with
							- 3	206 -	-					sand.
			SS	06	100	20			0					
												T		Orange sand seam through
		204 7	SS	07	100	35	- 4	205 -				_		out.
6	NATIVE TIL	L 4.3					Ē		-					
	trace clay, r	ish grey, dense, sandy SILT, noist.	SS	08	100	30			0					
	becomes a	ev					5	204 -				-		
ĺφ	becomeo gi	203.5	SS	09	100	24	È							
	Light grey, v CLAY, mois	very stiff to hard, silty sandy 5.5 t.	66	10	100	27	Ē	8						
			- 33	10	100	21	- 6	203 -						
			ss	11	100	39	-							
	haamaaw	-1					Ē							
\$L	becomes w	əl.	ss	12	100	25	- 7	202 -	0					Some rocks
							È							
			ss	13	100	63	Ē			0				
12							- 8	201 -						
		000 5	SS	14	72	78	E			0				Some rocks.
N.N.	End of bore	hole. 8.5					F							
	Notes:													
	 Borehol and not 	e was tound to be open reestanding ground water												
	2. Water ta	able was measured												
	upon co the hollo	mpletion of drilling inside ow stem auger and on												
	October	21,2019.												
))	$\frac{\nabla}{\Xi}$ No frees	tanding	ground	dwater r	neasur	ed in o	pen bor	ehole upon co	mpletion of dri	lling Cave in depth record	ed on co	mpletion	of drilling: <u>5.64 m</u> .
SNC	LAVALIN	Groundw	vater de	pth obs	served o	on <u>21/</u>	10/201	<u>9</u> at a de	epth of: <u>3.</u>	<u>82 m</u> .				
401 Vaug	Hanlan Rd ghan, Ontario L	4L 3T1 Borehole details from a qualified of	as prese Geotechn	nted, do nical Engi	not const ineer. Als	titute a the	norough ole info	n understa rmation s	anding of all pote hould be read in	ntial conditions pr conjunction with t	esent and requires interpretative a he geotechnical report for which i	assistance t was		Scale: 1 : 63
rel:	909-051-0090	commisioned an	u ule acc	ompanyi	ny notes	IO RECO	u or B0	nenoies'.						Page: 1 of 1

RECORD	OF BOREHOLE N	lo.	BH	70/	NW 7	<u>70</u>							
Project Number:	665125						Drilling	g Location:	As per borel	nole location plan		L	ogged by: MF
Client:	City of Brampton						_ Drilling	g Method:	150 mm Ho	Ilow Stem Augering		(Compiled by: <u>NT</u>
Project Name:	Phase II Environmental Site A	ssess	ment				_ Drilling	y Machine:	Track Mount	ed Drill	44 2040	F	Reviewed by: MT
	10192 Hwy 50, Brampton, ON								<u>Jun 11, 201</u>	Date Completed. Jun	11, 2019		
		so	IL SA	MPLI	NG			FIELD		* Rinse pH Values	NO	EAS NORTI	TING: 606239.26 HING: 4851677.44
Local Ground	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value	DEPTH (m)	ELEVATION (m)	 SPT MTO Vane* △ Intact ▲ Remould * Undrained She 20 40 	DCPT Nilcon Vane* Intact Remould ear Strength (kPa) 60 80		INSTRUMENTAT INSTALLATION	Unit Weight (KN/m3)	COMMENTS
Top Soil ~ FILL Brown, firm	150 mm. 207.4 0.2 n, silty CLAY, trace gravel,	SS	01	100	5		207 -	0					Top of Riser Elevation = 208.47 m; Height of Riser= 0.94 m Sample submitted for
NATIVE TI Brown, stiff some grave	LL 0.8 f to very stiff, sandy silty CLAY, el, trace sand, oxidised, moist.	SS	02	16	12		-	0					BH70-01 PP = $2.5 \text{ Kg} / \text{sq.cm}$
		SS	03	100	19	- 2	206	0					PP = 4.0 Kg / sq.cm
	204 6	SS	04	100	25		205 —	0			-		PP = 4.5 Kg / sq. cm
Grey, com some grav	pact, SILT, trace to some clay.1 el, trace sand, moist.	SS	05	100	14		204 -	0					PP = 3.0 Kg / sq.cm
	203.0	SS	06	100	14	- - - - - -	-	0					PP = 3.0 Kg / sq.cm
Grey, com grael, trace	pact, SILT to silty SAND, trac d .6 e clay, moist	SS	07	8	20	- - - - - 5	203	0					
		SS	08	8	29 50 /		202 —	0					
very dense		SS	09	80	100 mm		201 —						
	199.5	ss	10	0	86 / 280 mm		200						
End of born Notes: 1. Borehc with no 4.42 m 2.Water tal comple stem ai 21, 20 2. PP= Pc	ehole. 8.1 ble was found to be open freestanding water at bgs upon completion. ble was measured upon titon of drilling inside the hollow uger on June 24 and October 19. bocket Penetrometer.												
	⊻ No freest	anding	ground	lwater r	neasure	ed in o	pen bor	ehole upon co	mpletion of dril	ling.			
01 Hanlan Rd aughan, Ontario I el: 905-851-0090	L4L 3T1 Error a qualified 0 commisioned and	as prese Geotechn d the acc	nted, do i ical Engi ompanyi	not const ineer. Als ng'Notes	titute a the so, boreho to Record	norough ole info rd of Bo	understa rmation shoreholes'.	nding of all pote	ntial conditions pre	esent and requires interpretative a ne geotechnical report for which it	issistance t was		Scale: 1 : 6

R	ECORD	OF BOREHOLE N	lo.	<u>BH</u>	74/N	w	<u>74</u>							
Pro	ject Number:	665125						Drilling	g Location:	As per borel	nole location plan		L	.ogged by: JP
Clie	ent:	City of Brampton						Drilling	g Method:	200 mm Ho	llow Stem Augering		(Compiled by: <u>NT</u>
Pro	ject Name:	Geotechnical Investigation-Jo	ohnstor	n Trans	sit Fac	ility		Drilling	g Machine:	Track Mount	ted Drill		F	Reviewed by: MT
Loc	ation:	Brampton						Date	Started:	Oct 16, 2019	Date Completed: Oct 1	6, 2019	<u>)</u> F	Revision No.: 0
	LITH		SC	DIL SA	MPLI	NG			FIELD	TESTING	LAB TESTING	7	EAS	TING: 606484.167
ogy Plot		DESCRIPTION	ile Type	ile Number	very (%)	N' Value	H (m)	ATION (m)	Penetrat ○ SPT MTO Vane* △ Intact ▲ Remould	ion Testing ● DCPT Nilcon Vane* ◇ Intact ◆ Remould	★ Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading	RUMENTATION ALLATION	t Weight N/m3)	HING: 4851890.911 COMMENTS
_ithol	Local Ground	Surface Elevation: 207 93 m	Samp	Samp	Seco	SPT '	DEPT		* Undrained Sh 20 40	ear Strength (kPa) 60 80	Atterberg Limits W _P 20 40 60 80	NSTF NST/	L Hit	
	Topsoil ~ 20 FILL Light brown clay, moist.	00 mm 207.: 0.2 , loose, silty SAND, some 207.:	ss	01	100	13			0		o ¹⁸			Top of Riser = 208.82 m Height of Riser = 0.89 m Sample submitted for laboratory analysis : BH74-01
	NATIVE TIL Light brown trace grave	L 0.8 , hard, sandy silty CLAY, , moist.	SS	02	100	31	- - - - - -	207 -	0		o ¹¹			Sample submitted for laboratory analysis : BH74-02
			ss	03	100	38	- - - - - - -	206 -	0					
			ss	04	100	55		205 -		0				
		204.:	SS	05	100	70				0				Some grey clay mottling.
	silty SAND,	trace clay, moist to wet.	ss	06	100	70	- 4 - - -	204 –		0	o ¹¹			Sample submitted for laboratory analysis : BH74-06
	some silt ar	d gravel, wet.	SS	07	8	60	- - - - - - -	203 -		0				
	becomes co	ompact. 202.0 hole. 5.9	SS	08	51	16	-	- 202 -	0					Borehole cave in at 5.64 mbgl due to wet soil.
	 Notes: Borehol 5.64 mb water Water ta complet hollow s October 	e was found to cave at gs and no freestanding able was measured upon ion of drilling inside the tem auger and on 21 2019												
))	$\frac{\sum}{=}$ No frees	standing	ground	dwater r	neasur	ed in o	pen bor	ehole upon co	mpletion of dri	lling.			
SNC	·LAVALIN	$\frac{\mathbf{Y}}{\underline{Y}}$ Ground	water de	pth obs	served o	on <u>21/</u>	10/201	<u>9</u> at a de	pth of: <u>2.</u>	<u>59 m</u> .				
401 Vau Tel:	Hanian Rd ghan, Ontario L 905-851-0090	4L 3T1 Borehole details from a qualified commissioned an	as prese Geotechr nd the acc	nted, do nical Eng companyi	not cons ineer. Als ing'Notes	titute a ti o, boreh to Reco	horough ole info rd of Bo	understa rmation sl reholes'.	nding of all pote hould be read in	ntial conditions pro conjunction with t	esent and requires interpretative a he geotechnical report for which it	ssistance was		Scale: 1 : 63 Page: 1 of 1

٦

RI	ECORD OF BOREHOLE	No.	<u>BH</u>	75/	/ W	<u>75</u>								
Pro	ject Number: 665125						Drilling	g Location:	As per borel	hole location plan		L	ogged by: JP	
Clie	ent: <u>City of Brampton</u>						Drilling	g Method:	200 mm Ho	bllow Stem Augering		(Compiled by: <u>NT</u>	
Pro	ject Name: Geotechnical Investigatio	n-Johnsto	n Tran	sit Faci	ility		Drilling	g Machine:	Track Mount	ted Drill		F	Reviewed by: MT	
Loc	ation: Brampton						Date S	Started:	Oct 16, 2019	9 Date Completed: Oct	16, 2019) F	Revision No.: 0	
		so	DIL SA	MPLI	NG			FIELD		* Rinse pH Values	N	EAS	TING: 606531.454 HING: 4851945.297	
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value	DEPTH (m)	ELEVATION (m)	Penetrat O SPT MTO Vane* △ Intact A Remould * Undrained Sha	DCPT Nilcon Vane* Intact Remould ear Strength (kPa) 60 80	2 4 9 6 10 12 Soil Vapour Reading A parts per million (ppm) 100 200 300 400 ▲ Lower Explosive Limit (LEL) ** Passing 75 um (%) Mosture Content (%) ● Mosture Content (%) Mosture Content (%) ** #************************************	INSTRUMENTATI INSTALLATION	Unit Weight (KN/m3)	COMMENTS	
	FILL Light brown, very stiff, silty CLAY, trace gravel, moist.	07.3	01	100	16			0		0 ¹⁹			Top of Riser = 208.95 m Height of Riser = 0.86 m. Sample submitted for laboratory analysis : BH75-01	
	NATIVE STRATA Light brown, very stiff, silty CLAY, trace gravel, trace sand, moist.	0.8 SS	02	100	18		207 —	0		o ¹⁸			Sample submitted for laboratory analysis : BH75-02	
		SS	03	100	33	- - - - - 2	206 -	0						
NATIVE TILL 2.3 SS 04 100 255 -														
Sample sub SS 05 74 72 0 Light brownish grey, silty CLAY, some 3.8 SS 06 100 125 0 10 125 0 10 125 0 0 11 0 0 11 0 0 11														
Light brownish grey, silty CLAY, some 3.8 SS 06 100 125 4 204 - 011 of Porpholo														
	 Borehole was found to be open and no freestanding water. Water table was measured upon completion of drilling inside the hollow stem auger and on October 21,2019. 												at 4.27 mbgs.	
SNC	No f Stavalin ✓ No f Stavalin	reestanding undwater de	g ground	dwater r served c	neasur	ed in oj 10/2019	pen bore 9 at a de	ehole upon co	mpletion of dri 41 m.	lling.				
401 Vaug Tel:	Hanlan Rd ghan, Ontario L4L 3T1 905-851-0090	etails as prese ified Geotechi ed and the acc	ented, do nical Eng companyi	not const ineer. Als ing'Notes	titute a th o, boreh to Reco	norough ole infor rd of Boi	understa mation sh reholes'.	nding of all pote nould be read in	ntial conditions pr conjunction with t	esent and requires interpretative a he geotechnical report for which i	assistance t was		Scale: 1 : 63 Page: 1 of 1	

Appendix C

Hydraulic Conductivity Analysis

SNC-Lavalin Inc.			Slug Test Analysis Report					
	235 Lesmill Road		Project: Johnston Transit Facility					
	Toronto Ontario	M3R 2V/1	Number: 665125					
			Client: City of Brampton					
Location: 10192	2 Hwy 50, Brampton, ON	Slug Test: MW-03		Test Well: MW-03				
Test Conducted by: RHH and SA				Test Date: 2019/07/08				
Analysis Performed by: RHH		MW-03		Analysis Date: 2019/07/15				
Aquifer Thickne	ess: 3.60 m							
		Tir	ne [min]					
0 1E1 	400	800	1200	1600	2000			
1E0-								
Оч/ч								
1E-1								
1E-2								
Calculation using	Bouwer & Rice							
Observation Well	Observation Well Hydraulic							
MW-03 1.92 × 10 ⁻⁸								

Appendix D

Groundwater Quality Results

TABLE 4-5:Groundwater Analytical Results - Major Ion Chemistry
10192 Highway 50, Brampton, ON

		MW-22	MW-51B		
L		KFE482	KFO559		
SN	PWQO ¹	MW22	MW51B		
Samplin		2019/07/08	2019/07/10		
Parameter	RDL Units				
General Chemistry					
Alkalinity, Bicarbonate (as CaCO3)	1.0	mg/L	na ²	460	430
Chloride	1.0	mg/L	na	22	20
Electrical Conductivity	1	µS/cm	na	1,150	880
рН	-	pН	(6.5 - 8.5)	7.27	7.86
Sulphate	1.0	mg/L	na	250	67
Total Anion	-	meq/L	na	14.9	10.7
Total Cations	-	meq/L	na	14.7	11.0
Dissolved Metals					
Calcium	50	µg/L	na	110,000	46,000
Magnesium	50	µg/L	na	94,000	86,000
Potassium	1,000	µg/L	na	11,000	5,000
Sodium	500	µg/L	na	29,000	35,000

Footnotes:

Additional terms may be defined within the body of SNC-Lavalin's report.

RDL - Reportable Detection Limit, unless otherwise noted

< - Denotes concentration less than indicated detection limit

"-" - Not analyzed

na - Not applicable

µg/L – micrograms per litre

 $\mu S/cm$ - microSiemens per centimetre

mg/L - milligrams per litre

BOLD Concentration greater than PWQO

¹ Provincial Water Quality Objectives (MOEE, 1994, reprinted 1999 version)

² Alkalinity should not be decreased by more than 25% of the natural concentration

TABLE 4-4: Groundwater Analytical Results - City of Brampton Storm Sewer By-Law (90-75) 10192 Highway 50, Brampton, ON

	Sample Location		City of	MW-22	MW-51B	MW-74	
Laboratory Sample ID			Brampton	KFF482	KF0559	I CI312	
	Storm	MW22	MW51B	MW-74			
Samp	Discharge	2019/07/08	2019/07/10	2019/10/22			
Parameter	RDL	Units	Limits ¹				
Oil and Grease							
Total Oil and Grease	0.50	mg/L	15	7.9	< 0.50	< 0.50	
General Chemistry							
Alkalinity, Bicarbonate (as CaCO3)	1.0	mg/L	na	460	430	-	
Alkalinity, Carbonate (as CaCO3)	1.0	mg/L	na	< 1.0	2.9	-	
Biochemical oxygen demand	2	mg/L	15	< 2	< 2	< 2	
Chloride	1.0	mg/L	1,500	22	20	40	
Cyanide	0.0050	mg/L	0.1	< 0.0050	< 0.0050	< 0.0050	
Electrical Conductivity	1	µS/cm	na	1,150	880	-	
pH	-	pН	(5.5 - 9.5)	7.27	7.86	7.42	
Sulphate	1.0	mg/L	1,500	250	67	73	
Total Alkalinity	1.0	mg/L	na	460	440	-	
Total Anion	-	meq/L	na	14.9	10.7	-	
Total Cations	-	meq/L	na	14.7	11.0	-	
Total Phenols	0.0010	mg/L	0.020	< 0.0010	0.0010	< 0.0010	
Total Suspended Solids	10	mg/L	15	4,100	460	17	
		-		,			
Microbiological Tests							
Background	10	CFU/100mL	na	60	3,500	2,700	
Total Coliforms	10	CFU/100mL	2,400	< 10	10	30	
Total Metals							
Cadmium	5	µg/L	1,000	< 5	< 5	< 5	
Chromium (total)	10	µg/L	1,000	160	10	< 10	
Copper	20	µg/L	1,000	130	< 20	< 20	
Iron	20	µg/L	17,000	100,000	14,000	590	
Nickel	50	µg/L	1,000	100	< 50	< 50	
Zinc	10	μg/L	1,000	200	30	< 10	

Footnotes:

Additional terms may be defined within the body of SNC-Lavalin's report.

RDL - Reportable Detection Limit, unless otherwise noted

< - Denotes concentration less than indicated detection limit

"-" - Not analyzed

na - Not applicable

µg/L - micrograms per litre

µS/cm - microSiemens per centimetre

mg/L - milligrams per litre

BOLD Concentration greater than City of Brampton Storm Discharge Limits

¹ City of Brampton Discharge of Sewage By-law 90-75

Your P.O. #: 11876 Your Project #: 665125 Site Location: BRAMPTON STORM Your C.O.C. #: 726374-01-01

Attention: Wilson Liu

SNC-Lavalin Inc 235 Lesmill Road Toronto, ON CANADA M3B 2V1

> Report Date: 2019/07/16 Report #: R5799250 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9I7351 Received: 2019/07/09, 10:50

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Alkalinity	1	N/A	2019/07/11	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	1	N/A	2019/07/11	CAM SOP-00102	APHA 4500-CO2 D
Biochemical Oxygen Demand (BOD)	1	2019/07/10	2019/07/15	CAM SOP-00427	SM 23 5210B m
Chloride by Automated Colourimetry	1	N/A	2019/07/10	CAM SOP-00463	SM 4500-Cl E m
Conductivity	1	N/A	2019/07/11	CAM SOP-00414	SM 23 2510 m
Total Cyanide	1	2019/07/10	2019/07/10	CAM SOP-00457	OMOE E3015 5 m
Lab Filtered Metals Analysis by ICP	1	2019/07/11	2019/07/15	CAM SOP-00408	EPA 6010D m
Total Metals Analysis by ICP	1	2019/07/10	2019/07/10	CAM SOP-00408	EPA 6010D m
Anion and Cation Sum	1	N/A	2019/07/15		
Total Coliforms, (CFU/100mL)	1	N/A	2019/07/09	CAM SOP-00552	MOE LSB E3371
Total Oil and Grease	1	2019/07/12	2019/07/12	CAM SOP-00326	EPA1664B m,SM5520A m
рН	1	2019/07/09	2019/07/10	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2019/07/10	CAM SOP-00444	OMOE E3179 m
Sulphate by Automated Colourimetry	1	N/A	2019/07/10	CAM SOP-00464	EPA 375.4 m
Total Suspended Solids	1	2019/07/10	2019/07/11	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

Page 1 of 11

Your P.O. #: 11876 Your Project #: 665125 Site Location: BRAMPTON STORM Your C.O.C. #: 726374-01-01

Attention: Wilson Liu

SNC-Lavalin Inc 235 Lesmill Road Toronto, ON CANADA M3B 2V1

> Report Date: 2019/07/16 Report #: R5799250 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9I7351 Received: 2019/07/09, 10:50

This Certificate shall not be reproduced except in full, without the written approval of the laboratory. Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance. * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BRAMPTON STORM SEWER BYLAW (90-75)

BV Labs ID		KFE482			KFE482		
Sampling Data		2019/07/08			2019/07/08		
Sampling Date		12:00			12:00		
COC Number		726374-01-01			726374-01-01		
	UNITS	MW22	RDL	QC Batch	MW22 Lab-Dup	RDL	QC Batch
Inorganics							
Total BOD	mg/L	<2	2	6220507			
рН	рН	7.27		6219443			
Phenols-4AAP	mg/L	<0.0010	0.0010	6220158			
Total Suspended Solids	mg/L	4100	100	6220410			
Dissolved Sulphate (SO4)	mg/L	250	1.0	6218810			
Total Cyanide (CN)	mg/L	<0.0050	0.0050	6220584	<0.0050	0.0050	6220584
Dissolved Chloride (Cl-)	mg/L	22	1.0	6218804			
Petroleum Hydrocarbons					-		
Total Oil & Grease	mg/L	7.9	0.50	6224621			
Metals							
Total Cadmium (Cd)	mg/L	<0.005	0.005	6220285			
Total Chromium (Cr)	mg/L	0.16	0.01	6220285			
Total Copper (Cu)	mg/L	0.13	0.02	6220285			
Total Iron (Fe)	mg/L	100	0.02	6220285			
Total Nickel (Ni)	mg/L	0.10	0.05	6220285			
Total Zinc (Zn)	mg/L	0.20	0.01	6220285			
Microbiological							
Background	CFU/100mL	60	10	6219412			
Total Coliforms	CFU/100mL	<10	10	6219412			
RDL = Reportable Detection L	imit						
QC Batch = Quality Control Ba	atch						
Lab-Dup = Laboratory Initiate	d Duplicate						

RESULTS OF ANALYSES OF WATER

BV Labs ID		KFE482		
Sampling Data		2019/07/08		
		12:00		
COC Number		726374-01-01		
	UNITS	MW22	RDL	QC Batch
Calculated Parameters				
Anion Sum	me/L	14.9	N/A	6222640
Bicarb. Alkalinity (calc. as CaCO3)	mg/L	460	1.0	6222638
Carb. Alkalinity (calc. as CaCO3)	mg/L	<1.0	1.0	6222638
Cation Sum	me/L	14.7	N/A	6222640
Inorganics				,
Conductivity	mS/cm	1.15	0.001	6222829
Alkalinity (Total as CaCO3)	mg/L	460	1.0	6222830
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				
N/A = Not Applicable				

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID		KFE482								
Sampling Date		2019/07/08 12:00								
COC Number		726374-01-01								
	UNITS	MW22	RDL	QC Batch						
Metals										
Dissolved Calcium (Ca)	mg/L	110	0.05	6223541						
Dissolved Magnesium (Mg)	mg/L	94	0.05	6223541						
Dissolved Potassium (K)	mg/L	11	1	6223541						
Dissolved Sodium (Na)	mg/L	29	0.5	6223541						
RDL = Reportable Detection Limit QC Batch = Quality Control Batch										

TEST SUMMARY

BV Labs ID:	KFE482
Sample ID:	MW22
Matrix:	Water

Collected:	2019/07/08
Shipped:	
Received:	2019/07/09

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	6222830	N/A	2019/07/11	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	6222638	N/A	2019/07/11	Automated Statchk
Biochemical Oxygen Demand (BOD)	DO	6220507	2019/07/10	2019/07/15	Nusrat Naz
Chloride by Automated Colourimetry	KONE	6218804	N/A	2019/07/10	Deonarine Ramnarine
Conductivity	AT	6222829	N/A	2019/07/11	Surinder Rai
Total Cyanide	SKAL/CN	6220584	2019/07/10	2019/07/10	Louise Harding
Lab Filtered Metals Analysis by ICP	ICP	6223541	2019/07/11	2019/07/15	Azita Fazaeli
Total Metals Analysis by ICP	ICP	6220285	2019/07/10	2019/07/10	Azita Fazaeli
Anion and Cation Sum	CALC	6222640	N/A	2019/07/15	Automated Statchk
Total Coliforms, (CFU/100mL)	PL	6219412	N/A	2019/07/09	Farhana Rahman
Total Oil and Grease	BAL	6224621	2019/07/12	2019/07/12	Francis Afonso
рН	AT	6219443	2019/07/09	2019/07/10	Surinder Rai
Phenols (4AAP)	TECH/PHEN	6220158	N/A	2019/07/10	Bramdeo Motiram
Sulphate by Automated Colourimetry	KONE	6218810	N/A	2019/07/10	Alina Dobreanu
Total Suspended Solids	BAL	6220410	2019/07/10	2019/07/11	Mandeep Kaur

BV Labs ID: Sample ID: Matrix:	KFE482 Dup MW22 Water					Collected: 2019/07/08 Shipped: 2019/07/09 Received: 2019/07/09
Test Description		Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Total Cyanide		SKAL/CN	6220584	2019/07/10	2019/07/10	Louise Harding

GENERAL COMMENTS

Each te	emperature is the	average of up to t	hree cooler temperatures taken at receipt							
Į	Package 1	1.0°C								
Sample client re	Gample KFE482 [MW22] : Sample has been analyzed for Alkalinity, Bicarbonate, Sodium, Calcium, Magnesium Potassium, and Conductivity as per Client request.									
Results relate only to the items tested.										

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6218804	DRIVI	Matrix Spike	Dissolved Chloride (CI-)	2019/07/10		NC	%	80 - 120
6218804	DRIVI	Spiked Blank	Dissolved Chloride (CI-)	2019/07/10		104	%	80 - 120
6218804	DRM	Method Blank	Dissolved Chloride (Cl-)	2019/07/10	<1.0		mg/L	
6218804	DRM	RPD	Dissolved Chloride (Cl-)	2019/07/10	2.8		%	20
6218810	ADB	Matrix Spike	Dissolved Sulphate (SO4)	2019/07/10		NC	%	75 - 125
6218810	ADB	Spiked Blank	Dissolved Sulphate (SO4)	2019/07/10		105	%	80 - 120
6218810	ADB	Method Blank	Dissolved Sulphate (SO4)	2019/07/10	<1.0		mg/L	
6218810	ADB	RPD	Dissolved Sulphate (SO4)	2019/07/10	0.63		%	20
6219443	SAU	Spiked Blank	pH	2019/07/10		102	%	98 - 103
6219443	SAU	RPD	pH	2019/07/10	0.62		%	N/A
6220158	BMO	Matrix Spike	Phenols-4AAP	2019/07/10		NC	%	80 - 120
6220158	BMO	Spiked Blank	Phenols-4AAP	2019/07/10		103	%	80 - 120
6220158	BMO	Method Blank	Phenols-4AAP	2019/07/10	<0.0010		mg/L	
6220158	BMO	RPD	Phenols-4AAP	2019/07/10	0.68		%	20
6220285	AFZ	Matrix Spike	Total Cadmium (Cd)	2019/07/10		98	%	80 - 120
			Total Chromium (Cr)	2019/07/10		97	%	80 - 120
			Total Copper (Cu)	2019/07/10		98	%	80 - 120
			Total Iron (Fe)	2019/07/10		101	%	80 - 120
			Total Nickel (Ni)	2019/07/10		97	%	80 - 120
			Total Zinc (Zn)	2019/07/10		100	%	80 - 120
6220285	AFZ	Spiked Blank	Total Cadmium (Cd)	2019/07/10		98	%	80 - 120
			Total Chromium (Cr)	2019/07/10		99	%	80 - 120
			Total Copper (Cu)	2019/07/10		99	%	80 - 120
			Total Iron (Fe)	2019/07/10		98	%	80 - 120
			Total Nickel (Ni)	2019/07/10		98	%	80 - 120
			Total Zinc (Zn)	2019/07/10		103	%	80 - 120
6220285	AFZ	Method Blank	Total Cadmium (Cd)	2019/07/11	<0.005		mg/L	
			Total Chromium (Cr)	2019/07/11	<0.01		mg/L	
			Total Copper (Cu)	2019/07/11	<0.02		mg/L	
			Total Iron (Fe)	2019/07/11	<0.02		mg/L	
			Total Nickel (Ni)	2019/07/11	<0.05		mg/L	
			Total Zinc (Zn)	2019/07/11	<0.01		mg/L	
6220285	AFZ	RPD	Total Chromium (Cr)	2019/07/10	1.2		%	25
			Total Copper (Cu)	2019/07/10	1.6		%	25
			lotal Nickel (Ni)	2019/07/10	2.3		%	25
			lotal Zinc (Zn)	2019/07/10	3.2		%	25
6220410	MKX	QC Standard	lotal Suspended Solids	2019/07/11		96	%	85 - 115
6220410	MKX	Method Blank	Total Suspended Solids	2019/07/11	<10		mg/L	~-
6220410	IVIKX	RPD	lotal Suspended Solids	2019/07/11	2.7		%	25
6220507	NNA	QC Standard	Total BOD	2019/07/15	-	100	%	80 - 120
6220507	NNA	Method Blank	Total BOD	2019/07/15	<2		mg/L	
6220507	NNA	RPD		2019/07/15	NC	402	%	30
6220584	LHA	Matrix Spike [KFE482-06]	Total Cyanide (CN)	2019/07/10		102	%	80 - 120
6220584	LHA	Spiked Blank	Total Cyanide (CN)	2019/07/10		94	%	80 - 120
6220584	LHA	Method Blank	Total Cyanide (CN)	2019/07/10	<0.0050		mg/L	•••
6220584	LHA	KPD [KFE482-06]	i otal Cyanide (CN)	2019/07/10	NC		%	20
6222829	SAU	Spiked Blank		2019/07/11	-0.001	102	%	85 - 115
6222829	SAU	ivietnoa Blank	Conductivity	2019/07/11	<0.001		mS/cm	25
6222829	SAU	KPD Gailead Diamh		2019/07/12	1.8		%	25
6222830	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2019/07/11	-1.0	95	%	85 - 115
6222830	SAU	ivietnoa Blank	Alkalinity (Total as CaCO3)	2019/07/11	<1.0		mg/L	20
6222830	SAU	кри	Aikalinity (Total as CaCO3)	2019/07/12	0.20		%	20

Page 8 of 11

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6223541	AFZ	Matrix Spike	Dissolved Calcium (Ca)	2019/07/15		NC	%	80 - 120
			Dissolved Magnesium (Mg)	2019/07/15		NC	%	80 - 120
			Dissolved Potassium (K)	2019/07/15		106	%	80 - 120
			Dissolved Sodium (Na)	2019/07/15		NC	%	80 - 120
6223541	AFZ	Spiked Blank	Dissolved Calcium (Ca)	2019/07/15		97	%	80 - 120
			Dissolved Magnesium (Mg)	2019/07/15		97	%	80 - 120
			Dissolved Potassium (K)	2019/07/15		102	%	80 - 120
			Dissolved Sodium (Na)	2019/07/15		100	%	80 - 120
6223541	AFZ	Method Blank	Dissolved Calcium (Ca)	2019/07/15	<0.05		mg/L	
			Dissolved Magnesium (Mg)	2019/07/15	<0.05		mg/L	
			Dissolved Potassium (K)	2019/07/15	<1		mg/L	
			Dissolved Sodium (Na)	2019/07/15	<0.5		mg/L	
6223541	AFZ	RPD	Dissolved Calcium (Ca)	2019/07/15	2.7		%	25
			Dissolved Magnesium (Mg)	2019/07/15	2.2		%	25
			Dissolved Potassium (K)	2019/07/15	2.8		%	25
			Dissolved Sodium (Na)	2019/07/15	1.7		%	25
6224621	FA	Spiked Blank	Total Oil & Grease	2019/07/12		97	%	85 - 115
6224621	FA	RPD	Total Oil & Grease	2019/07/12	3.3		%	25
6224621	FA	Method Blank	Total Oil & Grease	2019/07/12	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Farhana Rahman

Farhana Rahman

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

	IN	VOICE TO:	1			REPO	RT TO:						PROJECT	INFORM/	ATION:				Laboratory Use	Only:
any N	#2432 SNC-Lav	alin Inc		omnany Na	#13733	SNC-Laval	in Inc				Ountation #		B90721						BV Labs Job #:	Bottle Order
ion	Accounts Payable	9		ttention:	Wilson	Liu			-		P.O #							-		I DECEMBER OF
155	455 René-Léveso	ue Blvd. West	4	ddress:	235 Les	mill Road					Project		665125	к. —						726374
	Montreal QC H22	1Z3			Toronto	ON M3B 2V	1		12		Project Name	e:	1		_			_	COC #:	Project Manag
	(519) 393-1000	Fax: (514) 866-	-0795 т	et:	(416) 63	35-5882	Fax				Site #:		Brampt	on Stor	m	_		IIIIII		Ema Gitej
-	Payables@sncla	valin.com	E	mail:	Wilson.	Liu@snclava	lin.com, ON	_LabData	a@snc	clavalin.c	Sampled By:	-	KH	H a	SA	ř			C#726374-01-01	
Reg 1 1 2 2 3 3	EGULATED DRINKING SUBMITTED C Inlation 153 (2011) Res/Park Medium Ind/Comm Coarse Agri/Other For RS	VATER OR WATER INTEN DN THE BV LABS DRINKING Other Reg VFine CCME Sanitar Reg 558. Astron 5 C MISA Municipalit PWQO Other	NDED FOR HUN WATER CHAI Julations y Sewer Bylaw Sewer Bylaw by Bramp		SUMPTION STODY Special Ins	MUST BE	Fittered (please circle): letals / Hg / Cr VI) Storm Sewer Bylaw (90-75)					ILLASE BE	SPECIFIC			R (* 5) P.4	Regular (St will be applied Standard TAT Please note; S lays - contact Job Specific Date Required	Please provide advando notice fr andard) TAT: If Rush TAT is not specified): = 5.7 Working days for most tests tandard TAT for certain tests such as b pour Project Managor for detais. Rush TAT (if applies to entire sub- tandard TAT (if applies to entire sub-	of rush projects 30D and Dioxins/Furant mission) ne Required:
-	Include Criteria	on Certificate of Analysis (Y/	N)?_N				N N	nptan									R	Rush Confirm	ation Number(d	call lab for #)
S	ample Barcode Label	Sample (Location) Identification	n Date Sa	mpled T	ime Sampled	Matrix		Brar										e of Bottles	Comm	ents
		MW22	July	8/19 1	2:00	GW	N	X								1		8		
													-						1	
				_			1							_						
Ĩ	09	-ml-19 10:50							1											
	Ema Gita B91	ej 111111111111111111111111111111111111																•		
_			1	-				11	1	-			-	-		-	-	-		
_			_							-				_				-		
		in the second second												-						
	* RELINQUISHED BY: (Si	gnature/Print) Date	e: (YY/MM/DD)	Time	A	RECEIVED	BY: (Signature/	Print)	1	Date: (Y)	/MM/DD)	Tì	me	# jars u not su	used and ibmitted		and the second	Laborat	tory Use Only	and Ver
d	ella Hu	2-115120 19	107/08	16:00	14/		Torrad	aus	-4	60191	JUg	10	2150	1	X	Time Se	nsitive	Temperatu	ure (°C) on Recei Present	

Bureau Veritas Canada (2019) Inc.

Your P.O. #: 11876 Your Project #: 665125 Site Location: 10192 HWY50, BRAMPTON, ON Your C.O.C. #: 726383-01-01

Attention: Wilson Liu

SNC-Lavalin Inc 235 Lesmill Road Toronto, ON CANADA M3B 2V1

> Report Date: 2019/07/17 Report #: R5800701 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B919006 Received: 2019/07/10, 13:00

Sample Matrix: Water # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Alkalinity	1	N/A	2019/07/11	CAM SOP-00448	SM 23 2320 B m
Alkalinity	1	N/A	2019/07/12	CAM SOP-00448	SM 23 2320 B m
Carbonate, Bicarbonate and Hydroxide	2	N/A	2019/07/12	CAM SOP-00102	APHA 4500-CO2 D
Biochemical Oxygen Demand (BOD)	1	2019/07/11	2019/07/16	CAM SOP-00427	SM 23 5210B m
Chloride by Automated Colourimetry	2	N/A	2019/07/12	CAM SOP-00463	SM 4500-Cl E m
Conductivity	1	N/A	2019/07/11	CAM SOP-00414	SM 23 2510 m
Conductivity	1	N/A	2019/07/12	CAM SOP-00414	SM 23 2510 m
Total Cyanide	1	2019/07/11	2019/07/11	CAM SOP-00457	OMOE E3015 5 m
Lab Filtered Metals Analysis by ICP	2	2019/07/11	2019/07/15	CAM SOP-00408	EPA 6010D m
Total Metals Analysis by ICP	1	2019/07/11	2019/07/12	CAM SOP-00408	EPA 6010D m
Anion and Cation Sum	2	N/A	2019/07/15		
Total Coliforms, (CFU/100mL)	1	N/A	2019/07/10	CAM SOP-00552	MOE LSB E3371
Total Oil and Grease	1	2019/07/13	2019/07/13	CAM SOP-00326	EPA1664B m,SM5520A m
рН	1	2019/07/11	2019/07/11	CAM SOP-00413	SM 4500H+ B m
рН	1	2019/07/11	2019/07/12	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2019/07/11	CAM SOP-00444	OMOE E3179 m
Sulphate by Automated Colourimetry	2	N/A	2019/07/12	CAM SOP-00464	EPA 375.4 m
Total Suspended Solids	1	2019/07/11	2019/07/12	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Your P.O. #: 11876 Your Project #: 665125 Site Location: 10192 HWY50, BRAMPTON, ON Your C.O.C. #: 726383-01-01

Attention: Wilson Liu

SNC-Lavalin Inc 235 Lesmill Road Toronto, ON CANADA M3B 2V1

> Report Date: 2019/07/17 Report #: R5800701 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B919006

Received: 2019/07/10, 13:00

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BV Labs ID		KFO559						
Sampling Date		2019/07/10						
		10:30						
COC Number		726383-01-01						
	UNITS	MW51B	RDL	QC Batch				
Inorganics								
Total BOD	mg/L	<2	2	6222661				
рН	рН	7.86		6222836				
Phenols-4AAP	mg/L	0.0010	0.0010	6222826				
Total Suspended Solids	mg/L	460	10	6222923				
Dissolved Sulphate (SO4)	mg/L	67	1.0	6223639				
Total Cyanide (CN)	mg/L	<0.0050	0.0050	6223497				
Dissolved Chloride (Cl-)	mg/L	20	1.0	6223635				
Petroleum Hydrocarbons	•		-					
Total Oil & Grease	mg/L	<0.50	0.50	6226807				
Metals								
Total Cadmium (Cd)	mg/L	<0.005	0.005	6222604				
Total Chromium (Cr)	mg/L	0.01	0.01	6222604				
Total Copper (Cu)	mg/L	<0.02	0.02	6222604				
Total Iron (Fe)	mg/L	14	0.02	6222604				
Total Nickel (Ni)	mg/L	<0.05	0.05	6222604				
Total Zinc (Zn)	mg/L	0.03	0.01	6222604				
Microbiological								
Background	CFU/100mL	3500	10	6221476				
Total Coliforms	CFU/100mL	10	10	6221476				
RDL = Reportable Detection	Limit							
QC Batch = Quality Control Batch								

BRAMPTON STORM SEWER BYLAW (90-75)

RESULTS OF ANALYSES OF WATER

BV Labs ID KF0559 KF0560 KF0560 KF0560 KF0560 KF0560 KF0560 KF0560 M Sampling Date 2019/07/10 10:30 2019/07/10 10:30 2019/07/10 10:30 2019/07/10 10:30 2019/07/10 10:30 2019/07/10 10:30 2019/07/10 10:30 10 2019/07/10 10:30 10 2019/07/10 10:30 10 726383-01-01 V V 726383-01-01 V 726383-01-01 V 726383-01-01 V												
Sampling Date 2019/07/10 10:30 2019/07/10 10:30 <td>BV Labs ID</td> <td></td> <td>KFO559</td> <td></td> <td></td> <td>KFO560</td> <td></td> <td></td> <td>KFO560</td> <td></td> <td></td>	BV Labs ID		KFO559			KFO560			KFO560			
COC Number 726383-01-01 77638 726383-01-01 <th coin="" t<="" tailor="" tain="" td="" the="" thein=""><td>Sampling Date</td><td></td><td>2019/07/10 10:30</td><td></td><td></td><td>2019/07/10 10:30</td><td></td><td></td><td>2019/07/10 10:30</td><td></td><td></td></th>	<td>Sampling Date</td> <td></td> <td>2019/07/10 10:30</td> <td></td> <td></td> <td>2019/07/10 10:30</td> <td></td> <td></td> <td>2019/07/10 10:30</td> <td></td> <td></td>	Sampling Date		2019/07/10 10:30			2019/07/10 10:30			2019/07/10 10:30		
UNITS MW51B RDL QC Batch MW511B RDL QC Batch MW511B Lab-Dup RDL QC Batch Calculated Parameters Anion Sum me/L 10.7 N/A 6220746 10.8 N/A 6220746 10.8 State Image: Constant of the state Image: Constantof the state Image: Constantof the	COC Number		726383-01-01			726383-01-01			726383-01-01			
Calculated Parameters Anion Sum me/L 10.7 N/A 6220746 10.8 N/A 6220746 Image: Constraint of the constrain		UNITS	MW51B	RDL	QC Batch	MW511B	RDL	QC Batch	MW511B Lab-Dup	RDL	QC Batch	
Anion Sum me/L 10.7 N/A 6220746 10.8 N/A 6220746 Image: Constraint of the state of the s	Calculated Parameters											
Bicarb. Alkalinity (calc. as CaCO3) mg/L 430 1.0 6220743 440 1.0 6220743 Image: Carb. Alkalinity (calc. as CaCO3) mg/L 2.9 1.0 6220743 3.5 1.0 6220743 Image: Carb. Alkalinity (calc. as CaCO3) mg/L 2.9 1.0 6220743 3.5 1.0 6220743 Image: Carb. Alkalinity (calc. as CaCO3) mg/L 2.9 1.0 6220746 11.2 N/A 6220746 Image: Carb. Alkalinity (calc. as CaCO3) mg/L 11.0 N/A 6220746 11.2 N/A 6220746 Image: Carb. Alkalinity (calc. as CaCO3) mg/L 11.0 N/A 6220746 11.2 N/A 6220746 Image: Carb. Alkalinity (calc. as CaCO3) mg/L 0.001 6222829 0.893 0.001 6222829 0.877 0.001 6222829 0.877 0.001 6222836 7.95 6222836 6222836 7.95 6222836 6222830 Alkalinity (Total as CaCO3) mg/L 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 Alkalinity (Total as CaCO3) mg/L 440	Anion Sum	me/L	10.7	N/A	6220746	10.8	N/A	6220746				
Carb. Alkalinity (calc. as CaCO3) mg/L 2.9 1.0 6220743 3.5 1.0 6220743 Cation Sum me/L 11.0 N/A 6220746 11.2 N/A 6220746 Inorganics Conductivity mS/cm 0.880 0.001 6222829 0.893 0.001 6222829 0.877 0.001 6222836 pH pH 7.93 6222836 7.95 6222836 Dissolved Sulphate (SO4) mg/L 68 1.0 6223639 Alkalinity (Total as CaCO3) mg/L 440 1.0 6222830 440 1.0 622830 440 1.0 622830 440 1.0 622830 440 1.0 622830 440 1.0 622830 440 1.0 622830 440 1.0 622830 440 1.0 622830 440 1.0 622830 440 1.0 6223635 <td< td=""><td>Bicarb. Alkalinity (calc. as CaCO3)</td><td>mg/L</td><td>430</td><td>1.0</td><td>6220743</td><td>440</td><td>1.0</td><td>6220743</td><td></td><td></td><td></td></td<>	Bicarb. Alkalinity (calc. as CaCO3)	mg/L	430	1.0	6220743	440	1.0	6220743				
Cation Sum me/L 11.0 N/A 6220746 11.2 N/A 6220746 Inorganics Conductivity mS/cm 0.880 0.001 6222829 0.893 0.001 6222829 0.877 0.001 6222836 pH pH 7.93 6222836 7.95 6222836 Dissolved Sulphate (SO4) mg/L 688 1.0 6222830 440 1.0 6222830 Alkalinity (Total as CaCO3) mg/L 440 1.0 6222830 440 1.0 6222830 Dissolved Chloride (Cl-) mg/L 440 1.0 6222830 440 1.0 6222830 Dissolved Chloride (Cl-) mg/L 0 0 20 1.0 6223635 0 RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate Value	Carb. Alkalinity (calc. as CaCO3)	mg/L	2.9	1.0	6220743	3.5	1.0	6220743				
Inorganics Conductivity mS/cm 0.880 0.001 6222829 0.893 0.001 6222829 0.877 0.001 6222829 pH pH 7.93 6222836 7.95 6222836 Dissolved Sulphate (SO4) mg/L 68 1.0 6222830 440 1.0 6222830 Alkalinity (Total as CaCO3) mg/L 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 440 1.0 6223635 1.0 6223635 1.0	Cation Sum	me/L	11.0	N/A	6220746	11.2	N/A	6220746				
Conductivity mS/cm 0.880 0.001 6222829 0.893 0.001 6222829 0.877 0.001 6222829 pH pH PH 7.93 6222836 7.95 6222836 Dissolved Sulphate (SO4) mg/L 68 1.0 6222830 440 1.0 6222830 Alkalinity (Total as CaCO3) mg/L 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 Dissolved Chloride (Cl-) mg/L 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 Dissolved Chloride (Cl-) mg/L 440 1.0 6222830 440 1.0 6222830 RDL = Reportable Detection Limit QC Batch = Quality Control Batch 20 1.0 6223635 1 1 Lab-Dup = Laboratory Initiated Duplicate 6222830 6223635 1 1 1	Inorganics	<u> </u>										
pH pH 7.93 6222836 7.95 6222836 Dissolved Sulphate (SO4) mg/L mg/L 68 1.0 6223639 622836 6288 6288 62886 62886 62886 <	Conductivity	mS/cm	0.880	0.001	6222829	0.893	0.001	6222829	0.877	0.001	6222829	
Dissolved Sulphate (SO4) mg/L mg/L 68 1.0 6223639 6223639 Alkalinity (Total as CaCO3) mg/L 440 1.0 6222830 440 1.0 6222830 440 1.0 6222830 Dissolved Chloride (Cl-) mg/L 0 20 1.0 6223635 0 0 RDL = Reportable Detection Limit U 0 20 1.0 6223635 0 0 QC Batch = Quality Control Batch U U 0	рН	рН				7.93		6222836	7.95		6222836	
Alkalinity (Total as CaCO3)mg/L4401.062228304401.062228304401.06222830Dissolved Chloride (Cl-)mg/L201.06223635201.0622363520RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate4401.062228304401.06222830	Dissolved Sulphate (SO4)	mg/L				68	1.0	6223639				
Dissolved Chloride (Cl-) mg/L 20 1.0 6223635 RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate	Alkalinity (Total as CaCO3)	mg/L	440	1.0	6222830	440	1.0	6222830	440	1.0	6222830	
RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Duplicate	Dissolved Chloride (Cl-)	mg/L				20	1.0	6223635				
N/A - Not Applicable	RDL = Reportable Detection Limit QC Batch = Quality Control Batch Lab-Dup = Laboratory Initiated Dup	plicate										

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID		KFO559	KFO560	KFO560				
Course line Data		2019/07/10	2019/07/10	2019/07/10				
Sampling Date		10:30	10:30	10:30				
COC Number		726383-01-01	726383-01-01	726383-01-01				
				MW511B		00 0-4-4		
	UNITS	WW51B	MW211B	Lab-Dup	RDL	QC Batch		
Metals								
Dissolved Calcium (Ca)	mg/L	46	47	46	0.05	6223541		
Dissolved Magnesium (Mg)	mg/L	86	87	86	0.05	6223541		
Dissolved Potassium (K)	mg/L	5	4	4	1	6223541		
Dissolved Sodium (Na)	mg/L	35	35	34	0.5	6223541		
RDL = Reportable Detection Limit								
QC Batch = Quality Control Batch								
Lab-Dup = Laboratory Initiate	d Duplic	cate						

TEST SUMMARY

BV Labs ID:	KFO559
Sample ID:	MW51B
Matrix:	Water

Collected:	2019/07/10
Shipped:	
Received:	2019/07/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	6222830	N/A	2019/07/11	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	6220743	N/A	2019/07/12	Automated Statchk
Biochemical Oxygen Demand (BOD)	DO	6222661	2019/07/11	2019/07/16	Nusrat Naz
Chloride by Automated Colourimetry	KONE	6223635	N/A	2019/07/12	Deonarine Ramnarine
Conductivity	AT	6222829	N/A	2019/07/11	Surinder Rai
Total Cyanide	SKAL/CN	6223497	2019/07/11	2019/07/11	Gnana Thomas
Lab Filtered Metals Analysis by ICP	ICP	6223541	2019/07/11	2019/07/15	Azita Fazaeli
Total Metals Analysis by ICP	ICP	6222604	2019/07/11	2019/07/12	Suban Kanapathippllai
Anion and Cation Sum	CALC	6220746	N/A	2019/07/15	Automated Statchk
Total Coliforms, (CFU/100mL)	PL	6221476	N/A	2019/07/10	Sirimathie Aluthwala
Total Oil and Grease	BAL	6226807	2019/07/13	2019/07/13	Sukhhardey Pal Singh Khangura
рН	AT	6222836	2019/07/11	2019/07/11	Surinder Rai
Phenols (4AAP)	TECH/PHEN	6222826	N/A	2019/07/11	Louise Harding
Sulphate by Automated Colourimetry	KONE	6223639	N/A	2019/07/12	Deonarine Ramnarine
Total Suspended Solids	BAL	6222923	2019/07/11	2019/07/12	Xinyue (Sarah) Hou

BV Labs ID:	KFO560
Sample ID:	MW511B
Matrix:	Water

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	6222830	N/A	2019/07/12	Surinder Rai
Carbonate, Bicarbonate and Hydroxide	CALC	6220743	N/A	2019/07/12	Automated Statchk
Chloride by Automated Colourimetry	KONE	6223635	N/A	2019/07/12	Deonarine Ramnarine
Conductivity	AT	6222829	N/A	2019/07/12	Surinder Rai
Lab Filtered Metals Analysis by ICP	ICP	6223541	2019/07/11	2019/07/15	Azita Fazaeli
Anion and Cation Sum	CALC	6220746	N/A	2019/07/15	Automated Statchk
рН	AT	6222836	2019/07/11	2019/07/12	Surinder Rai
Sulphate by Automated Colourimetry	KONE	6223639	N/A	2019/07/12	Deonarine Ramnarine

BV Labs ID:	KFO560 Dup
Sample ID:	MW511B
Matrix:	Water

Collected: 2019/07/10 Shipped: Received: 2019/07/10

Collected: 2019/07/10

Received: 2019/07/10

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Alkalinity	AT	6222830	N/A	2019/07/12	Surinder Rai
Conductivity	AT	6222829	N/A	2019/07/12	Surinder Rai
Lab Filtered Metals Analysis by ICP	ICP	6223541	2019/07/11	2019/07/15	Azita Fazaeli
рН	AT	6222836	2019/07/11	2019/07/12	Surinder Rai

GENERAL COMMENTS

Each te	emperature is the	average of up to	three cooler temperatures taken at receipt
	Package 1	10.0°C	
I			
Result	relate only to th	e items tested.	

QUALITY ASSURANCE REPORT

QA/QC	1	00 T	Devenuenter	Data Arabarat	Malua	Deserver		OC Lineite
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6222604	SUK	Matrix Spike	Total Cadmium (Cd)	2019/07/12		99	%	80 - 120
				2019/07/12		99	70 0/	80 - 120
			Total Copper (Cu)	2019/07/12		98	%	80 - 120
			Total Iron (Fe)	2019/07/12		99	%	80 - 120
			Total NICKEI (NI)	2019/07/12		98	%	80 - 120
6222604	CLUK	Caller d Dis als	Total Zinc (Zn)	2019/07/12		98	%	80 - 120
6222604	SUK	Spiked Blank		2019/07/12		100	%	80 - 120
				2019/07/12		99	%	80 - 120
			Total Copper (Cu)	2019/07/12		98	%	80 - 120
			Total Iron (Fe)	2019/07/12		101	%	80 - 120
				2019/07/12		105	%	80 - 120
	<i>.</i>		Total Zinc (Zn)	2019/07/12		109	%	80 - 120
6222604	SUK	Method Blank	Total Cadmium (Cd)	2019/07/12	< 0.005		mg/L	
			Total Chromium (Cr)	2019/07/12	<0.01		mg/L	
			Total Copper (Cu)	2019/07/12	<0.02		mg/L	
			lotal Iron (Fe)	2019/07/12	<0.02		mg/L	
			lotal Nickel (Ni)	2019/07/12	< 0.05		mg/L	
	<i>.</i>		Total Zinc (Zn)	2019/07/12	<0.01		mg/L	
6222604	SUK	RPD	Total Zinc (Zn)	2019/07/12	1.0		%	25
6222661	NNA	QC Standard	Total BOD	2019/07/16	-	102	%	80 - 120
6222661	NNA	Method Blank		2019/07/16	<2		mg/L	20
6222661	NNA	RPD		2019/07/16	NC		%	30
6222826	LHA	Matrix Spike	Phenois-4AAP	2019/07/11		98	%	80 - 120
6222826	LHA	Spiked Blank	PhenoIs-4AAP	2019/07/11		97	%	80 - 120
6222826	LHA	Method Blank	PhenoIs-4AAP	2019/07/11	<0.0010		mg/L	20
6222826	LHA	RPD	Phenois-4AAP	2019/07/11	NC	402	%	20
6222829	SAU	Spiked Blank	Conductivity	2019/07/11	-0.001	102	%	85 - 115
6222829	SAU		Conductivity	2019/07/11	<0.001		mS/cm	25
6222829	SAU			2019/07/12	1.8	05	%	25
6222830	SAU	Spiked Blank	Alkalinity (Total as CaCO3)	2019/07/11	-1.0	95	% ma/l	85 - 115
6222630	SAU		Alkalinity (Total as CaCO3)	2019/07/11	<1.0		111g/L	20
6222630	SAU	KPD [KFU300-01]		2019/07/12	0.20	102	70 0/	20
6222050	SAU		pn	2019/07/11	0.22	102	/0	90 - 105 NI/A
6222030		OC Standard	pri Total Suspended Solids	2019/07/12	0.25	05	/0 0/	N/A 95 - 115
6222923		Mothod Blank	Total Suspended Solids	2019/07/12	<10	33	/0 ma/l	00-110
6222925			Total Suspended Solids	2019/07/12			111g/L 0/	25
6222925	CTO	NFD Matrix Spika	Total Suspended Solids	2019/07/12	NC	101	/0	25 00 120
6222497	GTO	Spiked Plank	Total Cyanida (CN)	2019/07/11		101	/0 0/	00 - 120 00 - 120
6222497	GTO	Mothod Plank	Total Cyanida (CN)	2019/07/11		100	/0 mg/l	ou - 120
6223497	GTO		Total Cyanida (CN)	2019/07/11	<0.0050 0.66		0/	20
62225457	AE7	Matrix Spike [KEO560-01]	Dissolved Calcium (Ca)	2019/07/11	0.00	NC	70 0/	20 80 - 120
0223341	AI Z		Dissolved Magnesium (Mg)	2019/07/15		NC	70 %	80 - 120
			Dissolved Rotassium (K)	2019/07/15		106	70 0/	80 - 120
			Dissolved Sodium (Na)	2019/07/15			/0 0/_	80 - 120
6772541	A E 7	Spikod Plank	Dissolved Colcium (Na)	2019/07/15		07	70 0/	00 - 120 00 - 120
0223341	AFZ	Spikeu Dialik	Dissolved Magnesium (Mg)	2013/07/15		97 Q7	/0 %	80 - 120 80 - 120
			Dissolved Potassium (K)	2019/07/15		107	/0 0/_	80 - 120
				2019/07/15		102	/0 0/_	80 - 120 80 - 120
62225/1	Δ Ε 7	Method Blank	Dissolved Calcium (Ca)	2013/07/15	<0 05	100	/0 ma/l	00 - 120
0223341			Dissolved Magnesium (Mg)	2013/07/15	<0.05 <0.05		mø/L	
			Dissolved Potassium (K)	2013/07/15	~1		_Б / ⊑ mø/l	
1				2013/07/13	~+		···6/ -	

Page 8 of 11

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Sodium (Na)	2019/07/15	<0.5		mg/L	
6223541	AFZ	RPD [KFO560-01]	Dissolved Calcium (Ca)	2019/07/15	2.7		%	25
			Dissolved Magnesium (Mg)	2019/07/15	2.2		%	25
			Dissolved Potassium (K)	2019/07/15	2.8		%	25
			Dissolved Sodium (Na)	2019/07/15	1.7		%	25
6223635	DRM	Matrix Spike	Dissolved Chloride (Cl-)	2019/07/12		118	%	80 - 120
6223635	DRM	Spiked Blank	Dissolved Chloride (Cl-)	2019/07/12		102	%	80 - 120
6223635	DRM	Method Blank	Dissolved Chloride (Cl-)	2019/07/12	<1.0		mg/L	
6223635	DRM	RPD	Dissolved Chloride (Cl-)	2019/07/12	2.6		%	20
6223639	DRM	Matrix Spike	Dissolved Sulphate (SO4)	2019/07/12		112	%	75 - 125
6223639	DRM	Spiked Blank	Dissolved Sulphate (SO4)	2019/07/12		101	%	80 - 120
6223639	DRM	Method Blank	Dissolved Sulphate (SO4)	2019/07/12	<1.0		mg/L	
6223639	DRM	RPD	Dissolved Sulphate (SO4)	2019/07/12	0.85		%	20
6226807	SPK	Spiked Blank	Total Oil & Grease	2019/07/13		100	%	85 - 115
6226807	SPK	RPD	Total Oil & Grease	2019/07/13	3.1		%	25
6226807	SPK	Method Blank	Total Oil & Grease	2019/07/13	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

Sirimathie Aluthwala, Campobello Micro

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

BALLING ALL	INVOIC	FINEORMATION		T	REP	ORT INFORMATIC	Nif differs from	n invoice):			1		PROJE	T INFORMAT	ION:			ROTOO			1:	_	
	#2432 SNC-La	valin Inc.		Company	Name #137	33 SNC-Lava	lin Inc			1	B93355					-						Bottle Order #:	
mpany Name	Accounts Payab	e		Contact N	wame Wilso	n Liu					Task #	*				-	HGL	EN	V-1251		I DESTRUTE	H LEBULT	
dress.	455 René-Léves	que Blvd. West		Address	235 L	esmill Road					Project #		6651	25		•		1	1-1251	14	72638	726383	
	Montreal QC H2	Z 1Z3			Toror	nto ON M3B 2	/1			-	Profit Cen	tre						1	COC #:		Project Ma	inage	
one.	(519) 393-1000	Fax(51	4) 866-0795	Phone:	(416)	635-5882	Fax ON	LabDat		Verselle e	Site #		1019	2 Hoys	B	ramp	ton, O				Ema G	iite/	
ail:	Payables@shcia	valin.com		Email	VVIISC	n.Llu@shciav	ann.com, ON		a@snc	avail.c	Sampled f	BY	PLEASE	RE SPECIEICI	IVEN	CC P	Sau		C#726383-01-01	d Time (TAT) Re	quired:	_	
MOE REG	GULATED DRINKIN SUBMITTED	3 WATER OR WATER ON THE BV LABS DRI	R INTENDED FOR	HUMAN C	ONSUMPTIC	N MUST BE		-	1		ALT 313 RE	QUESTED	TELASE	at ar corrior	1	2	-	and the second	Please provide a	dvance notice for	rush projects	-	
Regula	tion 153 (2011)	0	ther Regulations		Special	Instructions	cle):				1		ę	a		St	111	Regular (St	andard) TAT:				
Table 1	Res/Park Mediu		Sanitary Sewer Byla	N	operat	manuchanta	< cir				SMG		bona	Nitri	N.	Am	vele	(will be applied Standard TAT:	if Rush TAT is not sp = 5-7 Working days fo	ecified): armost lests	2		
Table 2	Ind/Comm Coarse	Reg 558	Storm Sewer Bylaw				leas				by IC	-	Cal	trate	X and	5 N	2	Please note: Si	andard TAT for certa	in tests such as BC	D and Dioxins/Fun	mins a	
Fable 3 [Agri/Other For R	IC MISA M	Aunicipality Bram	pton			d) ps				lysis	P, p,	onate	Z .	Mg. F	3.2	C Sal	days - contact)	your Project Manager	for details			
abie		PWQQ					Itere tals	-			Ane	. SA	itarb	phate	Ca.	0	10 to	Job Specific Date Required	Rush TAT (if applie	is to entire submi Time	ssion) Required		
	Include Criteri		weig (WAN2				Me	4			Vetal	schult	uty, B	Phos	Iterac	à	the state	Rush Confirms	ation Number:	(ma)	Lab fac #1	_	
Sam	nie Barcode Label	Sample (Location) Ide	entification Da	e Samnlari	Time Sampler	t Matrix	t it	HCs	10CE	AHs	otal 1	puot	Vikalir	Ortho-	1	Ma	B 2	# of Bottles		Commer	nts		
Juni		and a local state of the		te osmipied				-u	1		15		4	00	-	1	1	~				_	
MW-	-SIB	MW-511	R Jul	V10/19	10:304	m GW							-			V	N.	8	Trace	of sed	iments		
			- 2	1.0				1								1	ulato	0	1	6	44	1	
MW-	SILB	MW-SII	B Jul	410/19	10:30ar	n GW										V	MKIA A	à	trace	ofse	diment	R	
													2				97	à					
-						-	-	-	-	-	-		-			-							
																- L.							
-								1	1	-			-			-						_	
											120		-										
																1	-						
										-							_						
-						-	-		-	1	-			-	-		-		-				
				-			-	-	-	-		-					-					_	
																100							
											1.	-		S									
	* RELINQUISHED BY: (S	ignature/Print)	Date: (YY/MM/DI	D) Tir	ne A	RECEIVED	BY: (Signature	/Print)		Date: (YY	(MM/DD)	T	ime	# jars use not subr	d and		Source Com	Laborate	ory Use Only	Cuetada C.	. 1		
S	ara Akib	An	July10/10	1 13:	00 10	er poer	14 min	(1	2019/0	01/10	13	:00	- 0		Time S	ensitive	Temperatu 101	of Con Reca	Present	u Tes		
						1												14/1	11 1	Intact		-973	

Your P.O. #: 11876 Your Project #: 665125 Site Location: CITY OF BRAMPTON Your C.O.C. #: 743070-01-01

Attention: Wilson Liu

SNC-Lavalin Inc 235 Lesmill Road Toronto, ON CANADA M3B 2V1

> Report Date: 2019/10/28 Report #: R5941689 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9T6639 Received: 2019/10/22, 16:03

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses 0	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Biochemical Oxygen Demand (BOD)	1	2019/10/23	2019/10/28	CAM SOP-00427	SM 23 5210B m
Chloride by Automated Colourimetry	1	N/A	2019/10/24	CAM SOP-00463	SM 23 4500-Cl E m
Total Cyanide	1	2019/10/24	2019/10/24	CAM SOP-00457	OMOE E3015 5 m
Total Metals Analysis by ICP	1	2019/10/23	2019/10/24	CAM SOP-00408	EPA 6010D m
Total Coliforms, (CFU/100mL)	1	N/A	2019/10/22	CAM SOP-00552	MOE LSB E3371
Total Oil and Grease	1	2019/10/28	2019/10/28	CAM SOP-00326	EPA1664B m,SM5520A m
рН	1	2019/10/23	2019/10/23	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2019/10/24	CAM SOP-00444	OMOE E3179 m
Sulphate by Automated Colourimetry	1	N/A	2019/10/24	CAM SOP-00464	EPA 375.4 m
Total Suspended Solids	1	2019/10/23	2019/10/24	CAM SOP-00428	SM 23 2540D m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Page 1 of 9

Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Your P.O. #: 11876 Your Project #: 665125 Site Location: CITY OF BRAMPTON Your C.O.C. #: 743070-01-01

Attention: Wilson Liu

SNC-Lavalin Inc 235 Lesmill Road Toronto, ON CANADA M3B 2V1

> Report Date: 2019/10/28 Report #: R5941689 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B9T6639 Received: 2019/10/22, 16:03

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Ema Gitej, Senior Project Manager Email: Ema.Gitej@bvlabs.com Phone# (905)817-5829

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 2 of 9 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

Total Cover Pages : 2 Page 2 of 9

BV Labs ID		LCI312		
Sampling Date		2019/10/22		
		12:15		
COC Number		743070-01-01		
	UNITS	MW-74	RDL	QC Batch
Inorganics				
Total BOD	mg/L	<2	2	6401388
рН	рН	7.42		6402072
Phenols-4AAP	mg/L	<0.0010	0.0010	6403865
Total Suspended Solids	mg/L	17	10	6402237
Dissolved Sulphate (SO4)	mg/L	73	1.0	6402215
Total Cyanide (CN)	mg/L	<0.0050	0.0050	6404196
Dissolved Chloride (Cl-)	mg/L	40	1.0	6402207
Petroleum Hydrocarbons	•			
Total Oil & Grease	mg/L	<0.50	0.50	6409890
Metals				
Total Cadmium (Cd)	mg/L	<0.005	0.005	6402377
Total Chromium (Cr)	mg/L	<0.01	0.01	6402377
Total Copper (Cu)	mg/L	<0.02	0.02	6402377
Total Iron (Fe)	mg/L	0.59	0.02	6402377
Total Nickel (Ni)	mg/L	<0.05	0.05	6402377
Total Zinc (Zn)	mg/L	<0.01	0.01	6402377
Microbiological				
Background	CFU/100mL	2700	10	6400460
Total Coliforms	CFU/100mL	30	10	6400460
RDL = Reportable Detection	Limit			
QC Batch = Quality Control B	atch			

BRAMPTON STORM SEWER BYLAW (90-75)

Page 3 of 9 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

TEST SUMMARY

BV Labs ID:	LCI312
Sample ID:	MW-74
Matrix:	Water

Collected: 2019/10/22 Shipped: Received: 2019/10/22

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Biochemical Oxygen Demand (BOD)	DO	6401388	2019/10/23	2019/10/28	Nusrat Naz
Chloride by Automated Colourimetry	KONE	6402207	N/A	2019/10/24	Deonarine Ramnarine
Total Cyanide	SKAL/CN	6404196	2019/10/24	2019/10/24	Gnana Thomas
Total Metals Analysis by ICP	ICP	6402377	2019/10/23	2019/10/24	Suban Kanapathippllai
Total Coliforms, (CFU/100mL)	PL	6400460	N/A	2019/10/22	Farhana Rahman
Total Oil and Grease	BAL	6409890	2019/10/28	2019/10/28	Gurseerat singh gill
рН	AT	6402072	2019/10/23	2019/10/23	Kazzandra Adeva
Phenols (4AAP)	TECH/PHEN	6403865	N/A	2019/10/24	Bramdeo Motiram
Sulphate by Automated Colourimetry	KONE	6402215	N/A	2019/10/24	Deonarine Ramnarine
Total Suspended Solids	BAL	6402237	2019/10/23	2019/10/24	Massarat Jan

GENERAL COMMENTS

Each temperature is the	e average of up to	ree cooler temperatures taken at receipt	
Package 1	9.7°C]	
lesults relate only to the	ne items tested.		

Page 5 of 9 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6401388	NNA	QC Standard	Total BOD	2019/10/28		89	%	80 - 120
6401388	NNA	Method Blank	Total BOD	2019/10/28	<2		mg/L	
6401388	NNA	RPD	Total BOD	2019/10/28	NC		%	30
6402072	KAD	Spiked Blank	рН	2019/10/23		102	%	98 - 103
6402072	KAD	RPD	рН	2019/10/23	0.20		%	N/A
6402207	DRM	Matrix Spike	Dissolved Chloride (Cl-)	2019/10/24		NC	%	80 - 120
6402207	DRM	Spiked Blank	Dissolved Chloride (Cl-)	2019/10/24		105	%	80 - 120
6402207	DRM	Method Blank	Dissolved Chloride (Cl-)	2019/10/24	<1.0		mg/L	
6402207	DRM	RPD	Dissolved Chloride (Cl-)	2019/10/24	2.6		%	20
6402215	DRM	Matrix Spike	Dissolved Sulphate (SO4)	2019/10/24		NC	%	75 - 125
6402215	DRM	Spiked Blank	Dissolved Sulphate (SO4)	2019/10/24		104	%	80 - 120
6402215	DRM	Method Blank	Dissolved Sulphate (SO4)	2019/10/24	<1.0		mg/L	
6402215	DRM	RPD	Dissolved Sulphate (SO4)	2019/10/24	2.2		%	20
6402237	MJ1	QC Standard	Total Suspended Solids	2019/10/24		100	%	85 - 115
6402237	MJ1	Method Blank	Total Suspended Solids	2019/10/24	<10		mg/L	
6402237	MJ1	RPD	Total Suspended Solids	2019/10/24	NC		%	25
6402377	SUK	Matrix Spike	Total Cadmium (Cd)	2019/10/24		106	%	80 - 120
			Total Chromium (Cr)	2019/10/24		97	%	80 - 120
			Total Copper (Cu)	2019/10/24		104	%	80 - 120
			Total Iron (Fe)	2019/10/24		96	%	80 - 120
			Total Nickel (Ni)	2019/10/24		99	%	80 - 120
			Total Zinc (Zn)	2019/10/24		98	%	80 - 120
6402377	SUK	Spiked Blank	Total Cadmium (Cd)	2019/10/24		104	%	80 - 120
			Total Chromium (Cr)	2019/10/24		96	%	80 - 120
			Total Copper (Cu)	2019/10/24		103	%	80 - 120
			Total Iron (Fe)	2019/10/24		100	%	80 - 120
			Total Nickel (Ni)	2019/10/24		100	%	80 - 120
			Total Zinc (Zn)	2019/10/24		100	%	80 - 120
6402377	SUK	Method Blank	Total Cadmium (Cd)	2019/10/24	<0.005		mg/L	
			Total Chromium (Cr)	2019/10/24	<0.01		mg/L	
			Total Copper (Cu)	2019/10/24	<0.02		mg/L	
			Total Iron (Fe)	2019/10/24	<0.02		mg/L	
			Total Nickel (Ni)	2019/10/24	<0.05		mg/L	
			Total Zinc (Zn)	2019/10/24	<0.01		mg/L	
6402377	SUK	RPD	Total Iron (Fe)	2019/10/24	8.2		%	25
6403865	BMO	Matrix Spike	Phenols-4AAP	2019/10/24		101	%	80 - 120
6403865	BMO	Spiked Blank	Phenols-4AAP	2019/10/24		99	%	80 - 120
6403865	BMO	Method Blank	Phenols-4AAP	2019/10/24	<0.0010		mg/L	
6403865	BMO	RPD	Phenols-4AAP	2019/10/24	9.5		%	20
6404196	GTO	Matrix Spike	Total Cyanide (CN)	2019/10/24		98	%	80 - 120
6404196	GTO	Spiked Blank	Total Cyanide (CN)	2019/10/24		98	%	80 - 120
6404196	GTO	Method Blank	Total Cyanide (CN)	2019/10/24	<0.0050		mg/L	
6404196	GTO	RPD	Total Cyanide (CN)	2019/10/24	4.5		%	20
6409890	GSG	Spiked Blank	Total Oil & Grease	2019/10/28		99	%	85 - 115
6409890	GSG	RPD	Total Oil & Grease	2019/10/28	2.0		%	25

Page 6 of 9 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, L5N 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
6409890	GSG	Method Blank	Total Oil & Grease	2019/10/28	<0.50		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Farhana Rahman

Farhana Rahman

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

> Page 8 of 9 Bureau Veritas Laboratories 6740 Campobello Road, Mississauga, Ontario, LSN 2L8 Tel: (905) 817-5700 Toll-Free: 800-563-6266 Fax: (905) 817-5777 www.bvlabs.com

VERITA.	VIIC	110								_	-		200 15	CT INFORM	ATION			BOT6	630		
_	IN	VOICE TO:				REPO	RTTO:						PROJEC	CT INFURN	ATION:			D)100	0.09	Pottle Order d	
npany Nam	#2432 SNC-Lav	ralin Inc		Comp	any Name #137	33 SNC-Laval	in Inc				Quotation	#	B833	000			JI.	EN	V-667	Bottle Order	
ention	Accounts Payabl	e Divid West		Attent	on VVIISC	on Liu					PO#		6661	25				1	1-007		Ш
dress	405 Rene-Leves	T 173		Addre		nto ON M3B 2V	1				Project		0001	fe.	+.				COC #: "	Project Manag	aer:
	(519) 393-1000	- 125	(514) 866-0795	-	(416)	635-5882					Project Na	me	1019	2 HWY5	BRAM	PTON		10100			
	Pavables@sncla	valin.com	014/000/0700	Tei. Email	Wilso	on Liu@snclava	lin.com.ON	LabDa	ta@sncl	lavalin.c.	Sile #	iu-	Jaco	Pest		4	5	REFERENCE	C#743070-01-01	Ema Giter	
MOERE	CULATED DRINKING				CONSUMPTIC	NI MUST BE	-	1		AN	ALYSIS REC	QUESTED	PLEASE	BE SPECIF	IC)	-	-		Turnaround Time (TAT) Re	beriur	
MOE RE	SUBMITTED (ON THE BV LABS D	DRINKING WAT	ER CHAIN O	CUSTODY							*					4	the -	Please provide advance notice for	rush projects	
Regula	tion 153 (2011)	-	Other Regulation	5	Special	Instructions	rcle)									-		Regular (S	itandard) TAT:		N
Table 1	Res/Park Medium		Sanitary Sewe	r Bylaw	-		S a	ō										Standard TA1	t = 5-7 Working days for most lests		P
Table 2	Ind/Comm Coarse	Reg 558	Storm Sewer B	ylaw y			/ Ci	Micr										Please note	Standard TAT for certain lests such as BC	D and Dioxins/Furans a	are > 5
Table 3	Agn/Other For RS	C MISA	Municipality	comptan			d (b	pu										days - contac	t your Project Manager for details	A THE SECOND STATES	-
Table		PWQ0		,			tere als /	Eg					2 3					Job Specifi	c Rush TAT (if applies to entire submi	ssion)	-
		Other			-		Met	on St										Rush Confirm	a nation Number	Required	-L
	Include Criteria	a on Certificate of An	nalysis (Y/N)?				Fiel	ampte										# at Battles	(ca)	lab for #}	
Sam	ole Barcode Label	Sample (Location)	Identification	Date Sample	Time Samplei	d Matrix		Bra	-	-	+.	+	-			-	_	a of Louise	Commer	115	
1		MW-TH		Atzl	9/12:15	611		X					1.1					8			
-		1	.1	Cer 1		6.00		0-	-	-		-				_	-	-			
								12.2											2.5		
-					-			-		-			-			-					
													-					3			
					-	-	-	-	-	-	-	-			-	-	-				
		-										-									
-																					
		1.000						1													-
																_					
								1													
																		-			
		1																			
		-	-				-														
														•							
							-	1						-		_					
1	· RELINQUISHED BY: (S	ignature/Print)	Date: (YY/	MM/DD)	Time	RECEIVED	BY: (Signature	(Print)	-	Date: (YY)	MM/DD)	T	ime	# jars	used and ubmitted	· Turne P		Labora	tory Use Only	Ver I	1 No
1	71 500	teston	19/00	Vic H	:50 00	the prot	AND MON	wh	4	01911	22	16	05	_		time S	ensitive	Temperat	ure (°C) on Recei Present	2	140
		1. T. P. C																VI	Intact	K	1

.

Appendix E

Dewatering Assessment

Parameters/Formulas	Units	Symbol	Value
Initial Water Head	m	Н	7.0
Groundwater Drawdown	m	H-h _w	4.0
Target Water Head	m	h _w	3.0
Water Head at the Base of the Water Bearing Zone (assumed 3 m below the target water head)	m	h ₀	0
Hydraulic Conductivity	m/s	к	1.0E-06
Length of the Trench Excavation	m	а	300
Width of the Trench Excavation	m	b	6
Length of the Line Source	m	х	300
Distance to the Line Source	m	L	12
Effective Radius of Influence (R ₀)			
$R_0 = 3000^*(H-h_w)^* sqrt(K)$	m	R ₀	12
Equivalent Radius (r _s)			
r _s =b/2	m	r _s	3

Flow to Trench Excavations in Unconfined Conditions Building Foundation (Spread Footing) - Johnston Transit Facility, Brampton

Radial Flow to a Well in a Water Table Aquifer			
$O(1 D^{*}_{1} $	m³/day	Q1	7.9
עו=נרו ת (ח -וו _ש)ויוו(ת ₀ יו _s)	L/day	Q1	7,900

Flow to a Drainage Trench from a Line Source			
$O_2 = 2^{*}(V^{*} V^{*} L^2 = h^2)(2L)$	m³/day	Q2	86.4
$Q_{Z}=2$ (A K (Π - Π_{W})/2L)	L/day	Q2	86,400

Total Flow to the Trench Excavation (Q1+Q2)	L/day	Q	94,300
Apply a Safety Factor of 2	L/day	Q	188,600
	L/min	Q	131

Figure 6.8 Approximate analysis of long narrow systems.

Reference

J. Patrick Powers, Arthur B. Corwin, Paul C. Schmall, Walter E. Kaeck, 2007. Construction Dewatering and Groundwater Control: New Methods and Applications, Third Edition, Chapter 6 Dewatering Design Using Analytical Methods.

Appendix F

MECP Well Records

WELL	WELL NUMBER	ADDRESS	DATE RECEIVED	USE
1	4902862	-	17-Jan-67	Water Supply
2	4905218		16-Nov-77	Water Supply
3	4905247	+	07-Dec-77	Water Supply
4	4905769	i i i i i i i i i i i i i i i i i i i	10-Apr-81	Water Supply
5	4905812		03-Nov-81	Water Supply
6	4905813	-	03-Nov-81	Water Supply
7	4906179	-	18-May-84	Water Supply
8	4906478	8	08-Aug-86	Water Supply
9	4908701	÷	07-Feb-01	Water Supply
10	4902865		17-Jan-67	Water Supply
11	4904154		29-Aug-73	Water Supply
12	4904215		27-Nov-73	Water Supply
13	4904866	-	10-May-76	Water Supply
14	4905674	-	05-Aug-80	Water Supply
15	6907184		-	Water Supply
16	4909717	10021 HWY 50	1	Observation Wells
17	7116410	10514 COLERAINE DR.		Observation Wells
18	7241945	4 CORDETTA RD	28-May-15	Observation Wells
19	7282340	HWY 50 SOUTHBOUND LANE SOUTH OF CADETTA RD	28-Feb-17	Observation Wells
20	7166972	12 CADETTA RD	09-Aug-11	Test Hole
21	7178624	16 CADETLA ROAD	29-Mar-12	Test Hole
22	4905768		10-Apr-81	Test Hole
23	7225368	16 CADETTA RD.	12-Aug-14	Abandoned-Supply
24	7249972	HWY 50 ASTLEMORE ROAD-COLERAINE DR.	14-Oct-15	Abandoned-Other
25	7249973	HWY 50 CASTLEMORE RD. & COLERAINE DR.	14-Oct-15	Abandoned-Other
26	7249974	HWY 50 CASTLEMORE RD. & COLERAINE DR.	14-Oct-15	Abandoned-Other
27	4902864		17-Jan-67	Abandoned-Quality
28	7279718	12	26-Jan-17	Unknown

	LEGEND 1 WATER WELL NUMBER WATER WELL OBSERVATION WELL TEST HOLE ABANDONED WELL UNKNOWN WELL PHASE ONE PROPERTY LIMIT 500m RADIUS FROM SITE	
NOTE(S): 1. SCALE AND SITE INFRASTRUCTURE LOCATIONS ARE APPROXIMATE 2. INFORMATION ON THIS FIGURE MAY BE LOST IF IT IS PRINTED, PHOTOCOPIED OR FAXED IN OTHER THAN ITS ORIGINAL SIZE AND COLOURS 3. 'm' : METRES		
SCALE 1:6,000 SCALE 1:6,000 SCALE 1:6,000 SOURCE(S): 1. GOOGLE EARTH PRO IMAGE, MARCH 7, 2018 2. MINISTRY OF THE ENVIRONMENT CONSERVATION AND PARKS, WATER WELL DATA SYSTEM AS OF JUNE 2019		
ITY OF BRAMPTON 192 HIGHWAY 50, BRAMPTON, ON		
65125 Filename: 009FF1_66512 AG Verified: W	Date: NOVEMBER 2019 Project Manager: AY	

PAGE FORMAT: 11×17

July 3, 2019

Private Water Wells Sampling Due diligence work for potential acquisition of the property known as 10192 Highway 50, Brampton, Ontario

Dear Property Owner,

The City of Brampton (City) is completing a due diligence work for potential acquisition of the property located at 10192 Highway 50, Brampton, Ontario.

At the request of the City, SNC-Lavalin will be conducting a water well survey and sampling program in the project area to gather information on private water wells including well construction details and historical use. We are requesting permission to access your property and private wells prior to and during construction. Participation is not mandatory. However, we recommend your volunteering participation.

Upon receiving your consent, staff from SNC-Lavalin will be visiting your property and collecting water samples from your well(s) for drinking water standards analysis. A cover letter along with water quality results will be provided to you once they become available.

If you would like to participate in this program, please contact Wilson Liu at (416) 635-5882 ext. 55806 or via email <u>wilson.liu@snclavalin.com</u>, and we request that you provide your confirmation by no later than Friday July 12, 2019. We appreciate your time and cooperation in this matter.

Yours Truly,

NO

Wilson Liu, P. Geo. Project Hydrogeologist Environment & Geoscience SNC-LAVALIN INC. Wilson.Liu@snclavalin.com

Appendix G

City of Brampton Official Plan – Schedule D
Brampton

Appendix H

Water Balance Analysis

				Soil			snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
Jan-38	8.1	40.4	-8.1	137.9	12.1	-4	40.4	0	12.7
Feb-38	11.4	76.5	-11.4	122.2	15.7	-4.3	116.9	0	6.4
Mar-38	22.2	41.7	75.8	100	22.2	0	58.4	98	54.3
Apr-38	40.3	33.3	20.5	100	40.3	0	29.2	20.5	38
May-38	66.1	72.4	17.3	100	66.1	0	14.6	17.3	30.5
Jun-38	96.4	42.2	-49	51	96.4	0	7.3	0	15.5
Jul-38	126.4	63.2	-59	20.9	97.4	28.9	0	0	9.9
Aug-38	114.2	37.1	-78.9	4.4	51.7	62.4	0	0	5.2
Sep-38	51.9	102.1	45.1	49.5	51.9	0	0	0	6.8
Oct-38	31.8	7.1	-25.1	37.1	19.1	12.7	0	0	1.2
Nov-38	15.8	33	15.6	52.7	15.8	0	0	0	2.1
Dec-38	10	27.4	-10	47.4	5.3	4.7	27.4	0	0.2
Jan-39	8.3	48.3	-8.3	43.4	4	4.4	75.7	0	0.1
Feb-39	10	88.1	-10	39.1	4.3	5.7	163.8	0	0.1
Mar-39	16.3	80.5	-16.3	32.7	6.4	9.9	244.3	0	0
Apr-39	32.5	90.2	175.4	100	32.5	0	122.1	108.1	58.6
May-39	73.9	26.4	12.3	100	73.9	0	61.1	12.3	34.5
Jun-39	100.7	51.8	-21	79	100.7	0	30.5	0	19.2
Jul-39	119.5	39.4	-66.8	26.2	105.5	14	15.3	0	10.3
Aug-39	107.3	51.6	-50.7	12.9	69.9	37.4	7.6	0	6.7
Jan-40	7.1	48.3	-7.1	12	0.9	6.1	55.9	0	2.1
Feb-40	9.8	34	-9.8	10.9	1.2	8.6	89.9	0	1
Mar-40	14.8	48.3	-14.8	9.3	1.6	13.2	138.2	0	0.5
Apr-40	32.5	50.8	84.9	94.2	32.5	0	69.1	0	2.8
May-40	64.4	123.4	87.4	100	64.4	0	34.6	81.5	47.1
Jun-40	92.3	86.1	6.7	100	92.3	0	17.3	6.7	28.1
Jul-40	116.6	70.9	-40.6	59.4	116.6	0	8.6	0	15.4
Aug-40	93	84.1	-4.5	56.7	91.2	1.8	0	0	10.2
Sep-40	54.9	102.4	42.4	99.1	54.9	0	0	0	8.1
Oct-40	27.2	45.5	16	100	27.2	0	0	15.1	11.3
Nov-40	14.8	114.3	93.8	100	14.8	0	0	93.8	57.1
Dec-40	9.4	82.6	-9.4	90.6	9.4	0	82.6	0	25.7
Jan-41	8.2	71.1	-8.2	83.2	7.5	0.8	153.7	0	12.9
Feb-41	9.8	31	-9.8	75.1	8.1	1.6	184.7	0	6.4
Mar-41	16.1	36.8	-16.1	63	12.1	4	221.5	0	3.2
Apr-41	44.5	45	109	100	44.5	0	110.8	71.9	39.8
May-41	73.9	53.8	32.6	100	73.9	0	55.4	32.6	37.8
Jun-41	109.2	75.7	-9.6	90.4	109.2	0	27.7	0	21.3
Jul-41	124	68.1	-45.5	49.3	119.7	4.4	13.8	0	12.2
Aug-41	93.6	39.4	-49.3	25	68.6	25	6.9	0	6.4
Sep-41	61	25.1	-30.2	17.4	38.3	22.7	0	0	3.4
Oct-41	32	89.2	52.7	70.2	32	0	0	0	5.6
Nov-41	17.3	52.6	32.7	100	17.3	0	0	2.8	4.6
Dec-41	10.7	41.1	-10.7	89.3	10.7	0	41.1	0	1
Jan-42	9	37.1	-9	81.3	8	1	78.2	0	0.5
Feb-42	8.9	41.1	-8.9	74.1	7.2	1.7	119.3	0	0.2
Mar-42	22.2	117.1	148.7	100	22.2	0	59.7	122.7	67.3
Apr-42	43.7	43.4	27.3	100	43.7	0	29.8	27.3	46.6
May-42	69.4	208.5	143.6	100	69.4	0	14.9	143.6	104.4
Jun-42	99.5	32.8	-60.9	39.1	99.5	0	7.5	0	48.6

				Soil			snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
Jul-42	114.4	110	-2.5	38.2	112.9	1.5	0	0	29
Aug-42	94.8	28.7	-67.5	12.4	53	41.7	0	0	13.2
Sep-42	54.9	99.8	39.9	52.3	54.9	0	0	0	10.9
Oct-42	31	56.4	22.5	74.9	31	0	0	0	5.8
Nov-42	15.4	78	58.7	100	15.4	0	0	33.6	22.2
Dec-42	8.3	110	-8.3	91.7	8.3	0	110	0	9.1
Jan-43	7.2	70.9	-7.2	85.1	6.6	0.6	180.9	0	4.6
Feb-43	10.4	48.8	-10.4	76.3	8.8	1.5	229.7	0	2.3
Mar-43	16.8	85.3	-16.8	63.5	12.8	4	315	0	1.1
Apr-43	30	56.6	181.3	100	30	0	157.5	144.8	75.8
May-43	66.1	104.4	111.9	100	66.1	0	78.8	111.9	97.6
Jun-43	114.7	45.2	-32.4	67.6	114.7	0	39.4	0	48.5
Jul-43	120.2	86.6	-18.3	55.2	114.3	5.9	19.7	0	27.4
Aug-43	96	49.3	-39.3	33.5	78.4	17.6	9.8	0	14
Sep-43	52.9	35.1	-9.7	30.3	46.4	6.4	0	0	7.5
Oct-43	28.8	73.4	40.9	71.2	28.8	0	0	0	6.6
Nov-43	14.5	40.6	24	95.2	14.5	0	0	0	3.5
Dec-43	8.7	15.5	-8.7	87	8.3	0.4	15.5	0	0.7
Jan-44	10.7	20.1	-10.7	77.6	9.3	1.4	35.6	0	0.4
Feb-44	9.9	63.2	-9.9	70	7.7	2.2	98.8	0	0.2
Mar-44	16.3	81.5	-16.3	58.6	11.4	4.9	180.3	0	0.1
Apr-44	32.9	82.8	135.9	100	32.9	0	90.2	94.5	51.4
May-44	80.1	137.9	96	100	80.1	0	45.1	96	78.6
Jun-44	104.5	102.4	15.3	100	104.5	0	22.5	15.3	48.6
Jul-44	120.2	90.2	-23.3	76.7	120.2	0	11.3	0	26.2
Aug-44	104.7	54.9	-46.9	40.7	93.8	10.9	5.6	0	13.6
Sep-44	57.3	64	9.1	49.9	57.3	0	0	0	8.6
Oct-44	29.9	17.5	-13.3	43.2	23.2	6.7	0	0	3.6
Nov-44	15.9	42.7	24.7	67.9	15.9	0	0	0	3.5
Dec-44	8.2	70.6	-8.2	62.4	5.6	2.6	70.6	0	0.7
Jan-45	6	40.1	-6	58.6	3.8	2.3	110.7	0	0.3
Feb-45	9.9	47.8	-9.9	52.8	5.8	4.1	158.5	0	0.2
Mar-45	28	114	159.6	100	28	0	79.2	112.4	62
Apr-45	40.6	83.1	78	100	40.6	0	39.6	78	71.3
May-45	55.9	145	101.7	100	55.9	0	19.8	101.7	91.7
Jun-45	92.9	81.3	-5.8	94.2	92.9	0	9.9	0	46.3
Jul-45	110.9	118.1	11.2	100	110.9	0	0	5.4	29.7
Aug-45	96	49	-49.4	50.6	96	0	0	0	14.4
Sep-45	57.7	128.8	64.7	100	57.7	0	0	15.3	20
Oct-45	29	57.2	25.4	100	29	0	0	25.4	22.3
Nov-45	15.9	54.6	36	100	15.9	0	0	36	30.5
Dec-45	8	41.7	-8	92	8	0	41.7	0	13.9
Jan-46	9.1	97.5	-9.1	83.6	8.4	0.7	139.2	0	6.9
Feb-46	9.3	57.9	-9.3	75.8	7.8	1.5	197.1	0	3.5
Mar-46	28.1	28.4	97.4	100	28.1	0	98.6	73.2	39.7
Apr-46	36.5	17	28.9	100	36.5	0	49.3	28.9	34.5
May-46	64	95.5	51.3	100	64	0	24.6	51.3	47.2
Jun-46	95.3	43.7	-41.4	58.6	95.3	0	12.3	0	23.4
Jul-46	115.8	79.2	-34.4	38.4	101.6	14.3	6.2	0	14.6
Aug-46	86.4	37.8	-44.3	21.4	59.1	27.3	0	0	7.2

				Soil			snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
Sep-46	59.1	73.7	10.9	32.3	59.1	0	0	0	6.3
Oct-46	35.6	81	41.4	73.6	35.6	0	0	0	5.4
Nov-46	17.3	44.5	25	98.6	17.3	0	0	0	2.9
Dec-46	10	50.3	-10	88.8	9.8	0.1	50.3	0	0.3
Jan-47	9.5	98.3	-9.5	80.4	8.4	1.1	148.6	0	0.2
Feb-47	9.2	27.2	-9.2	73	7.4	1.8	175.8	0	0.1
Mar-47	17.8	46.7	-17.8	60	13	4.8	222.5	0	0
Apr-47	34.5	74.9	147.9	100	34.5	0	111.2	107.9	57.7
May-47	60.6	84.8	75.6	100	60.6	0	55.6	75.6	69
Jun-47	97	117.1	42	100	97	0	27.8	42	59.3
Jul-47	115.1	103.1	-3.3	96.7	115.1	0	13.9	0	31.9
Aug-47	112.8	61	-47.9	50.4	111.2	1.6	7	0	16.4
Sep-47	59.5	37.6	-16.8	41.9	51.2	8.3	0	0	8.6
Oct-47	39.8	34.3	-7.2	38.9	35.6	4.2	0	0	5.1
Nov-47	14.7	29.7	13.5	52.4	14.7	0	0	0	3.2
Dec-47	8.8	44.2	-8.8	47.8	4.6	4.2	44.2	0	0.8
Jan-48	6.9	40.1	-6.9	44.5	3.3	3.6	84.3	0	0.4
Feb-48	8.8	67.1	-8.8	40.6	3.9	4.9	151.4	0	0.2
Mar-48	17.9	57.9	-17.9	33.3	7.3	10.6	209.3	0	0.1
Apr-48	40.3	52.6	114.3	100	40.3	0	104.6	47.6	26.5
May-48	62.5	62.7	49.4	100	62.5	0	52.3	49.4	39.8
Jun-48	100.1	80.5	2.5	100	100.1	0	26.2	2.5	23.6
Jul-48	120.2	51.3	-58.4	41.6	120.2	0	13.1	0	12.4
Aug-48	102.1	48.5	-49.5	21	73.2	28.9	6.5	0	7.3
Sep-48	65.3	154.4	87.9	100	65.3	0	0	8.9	14.6
Oct-48	29	58.4	26.5	100	29	0	0	26.5	19.6
Nov-48	19.1	81	57.8	100	19.1	0	0	57.8	41.3
Dec-48	10.5	47.8	-10.5	89.5	10.5	0	47.8	0	18.6
Jan-49	10.6	69.3	-10.6	80	9.5	1.1	117.1	0	9.3
Feb-49	11.5	75.9	-11.5	70.9	9.2	2.3	193	0	4.7
Mar-49	18.3	63	-18.3	57.9	13	5.3	256	0	2.3
Apr-49	38.2	31.2	119.5	100	38.2	0	128	77.3	41.4
May-49	73.9	9.4	-0.9	99.1	73.9	0	64	0	20.4
Jun-49	126.7	4.1	-90.8	9.1	125.8	0.8	32	0	10.2
Jul-49	132.8	61.5	-58.4	3.8	/9./	53	16	0	8.1
Aug-49	109.3	133.9	25.9	29.7	109.3	0	8	0	9.2
Sep-49	52.2	90.2	41.5	/1.1	52.2	0	0	0	5.8
0ct-49	35.8	67.8	28.6	99.8	35.8	0	0	0	4
NOV-49	14.2	48	31.4	100	14.2	0	04.0	31.2	18.3
Dec-49	10.7	84.8 06 F	-10.7	89.3	10.7	1 2	04.0 101.0	0	7.9
Jan-20	11.3	90.5	-11.3	79.2	10.1	1.2	181.3	0	4
Feb-50	9.5	(2.1	-9.5	/1./	11.2	Z	253.4	0	Z
1viai-50	21.1	61.7	-15.7	100	21.5	4.4	150.0	146.2	1
Apr-50	31.1 66.0	20.1	21.4	100	51.1	0	158.3	21.4	/0./ E2 E
Ividy-50	00.9	20.1	31.4	100	00.9	0	79.Z	31.4	20.5
	112 2	116.2	1.5	100	90.9 112 2	0	39.0 10.0	1.5	3U.Z
	01.0	110.3	1 2	100	01.0	0	73.8	18	20.3 1 E F
Aug-50	51.9	05.L 22 1	-1.Z 21	90.8 70 1	51.9	0	9.9	0	5.5 ב T
0ct E0	24.2	70	20.0	/0.1	24.2	0.2	0	17.0	0.7
000-50	54.5	/8	39.8	100	54.5	0	0	17.9	12./

				Soil			snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
Nov-50	14.8	90.4	71.1	100	14.8	0	0	71.1	45.9
Dec-50	9.4	27.7	-9.4	90.6	9.4	0	27.7	0	20.7
Jan-51	9.7	60.5	-9.7	81.8	8.8	0.9	88.2	0	10.4
Feb-51	10.9	44.2	-10.9	72.9	8.9	2	132.4	0	5.2
Mar-51	20.8	97.5	138.1	100	20.8	0	66.2	110.9	62.9
Apr-51	37.2	108.7	99.1	100	37.2	0	33.1	99.1	84
May-51	72.9	36.8	-21.4	78.6	72.9	0	16.6	0	41.1
Jun-51	98.9	88.4	-6.6	73.4	97.4	1.4	8.3	0	24.1
Jul-51	120.2	90.4	-26.1	54.2	113.3	6.9	0	0	14.3
Aug-51	93.6	52.3	-43.9	30.4	73.5	20.1	0	0	7.5
Sep-51	56.3	41.7	-16.7	25.3	44.7	11.6	0	0	4.5
Oct-51	31.8	60.5	25.7	51	31.8	0	0	0	4.3
Nov-51	13.1	70.6	54	100	13.1	0	0	5	6.6
Dec-51	9.4	99.6	-9.4	90.6	9.4	0	99.6	0	1.6
Jan-52	9.5	67.3	-9.5	82	8.6	0.9	166.9	0	0.8
Feb-52	11.4	40.9	-11.4	72.7	9.3	2	207.8	0	0.4
Mar-52	19	66.5	-19	58.8	13.8	5.2	274.3	0	0.2
Apr-52	42.4	58.4	150.2	100	42.4	0	137.1	109.1	57.6
May-52	63.6	72.6	73.9	100	63.6	0	68.6	73.9	67.9
Jun-52	107.8	29	-46	54	107.8	0	34.3	0	33.6
Jul-52	134.4	68.8	-51.9	26	110.6	23.9	17.1	0	19.5
Aug-52	95.4	61	-28.9	18.5	74	21.4	8.6	0	11.1
Sep-52	62.1	60.2	3.6	22.1	62.1	0	0	0	7
Oct-52	26.4	17.3	-10	19.9	18.6	7.8	0	0	2.9
Nov-52	17.2	90.7	69	88.9	17.2	0	0	0	5.5
Dec-52	11.6	40.1	-11.6	78.6	10.3	1.3	40.1	0	0.5
Jan-53	10.6	43.2	-10.6	70.3	8.3	2.3	83.3	0	0.3
Feb-53	12.3	36.1	-12.3	61.6	8.7	3.7	119.4	0	0.1
Mar-53	22	67.1	101.5	100	22	0	59.7	63.1	35
Apr-53	35.9	62	52.9	100	35.9	0	29.8	52.9	45.4
May-53	69.8	136.1	74.4	100	69.8	0	14.9	74.4	65.1
Jun-53	103.9	69.6	-30.3	69.7	103.9	0	7.5	0	32.6
Jul-53	121.7	71.9	-46	37.7	107.8	13.9	0	0	18.2
Aug-53	100.2	102.9	-2.5	36.7	98.7	1.5	0	0	12.4
Sep-53	58	72.9	11.2	47.9	58	0	0	0	7.3
Oct-53	33	19.3	-14.7	40.9	25.4	7.6	0	0	2.8
Nov-53	18.1	41.9	21.7	62.6	18.1	0	0	0	3
Dec-53	11.3	47.5	-11.3	55.6	7.1	4.2	47.5	0	0.5
Jan-54	7.7	52.3	-7.7	51.3	4.3	3.4	99.8	0	0.2
Feb-54	12.7	59.9	-12.7	44.8	6.5	6.2	159.7	0	0.1
Mar-54	18.9	77	-18.9	36.3	8.5	10.5	236.7	0	0.1
Apr-54	38.9	91.4	166.3	100	38.9	0	118.4	102.6	55.9
May-54	62.9	19.3	14.7	100	62.9	0	59.2	14.7	34
Jun-54	109.2	116.1	30.7	100	109.2	0	29.6	30.7	37.7
Jul-54	113.7	18.3	-81.5	18.5	113.7	0	14.8	0	16.8
Aug-54	91.9	91.2	2.1	20.6	91.9	0	7.4	0	12.5
Sep-54	56.3	80.5	27.6	48.2	56.3	0	0	0	8
Oct-54	34.1	213.9	169.1	100	34.1	0	0	117.3	71.4
Nov-54	16.6	37.3	18.9	100	16.6	0	0	18.9	41.6
Dec-54	9.5	57.2	-9.5	90.5	9.5	0	57.2	0	19.9

				Soil			snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
Jan-55	8.8	37.1	-8.8	82.5	8	0.8	94.3	0	9.9
Feb-55	10.3	38.6	-10.3	74	8.5	1.8	132.9	0	5
Mar-55	19	70.6	-19	59.9	14.1	4.9	203.5	0	2.5
Apr-55	45.4	63.2	116.4	100	45.4	0	101.8	76.3	42.6
May-55	77.1	59.7	30.5	100	77.1	0	50.9	30.5	37.9
Jun-55	107.2	24.6	-58.4	41.6	107.2	0	25.4	0	18.7
Jul-55	146.6	34.8	-100.8	0	87.4	59.2	12.7	0	10.5
Aug-55	116.3	104.4	-10.8	0	105.5	10.8	6.4	0	9.6
Sep-55	57.3	30.7	-21.8	0	35.5	21.8	0	0	3.7
Oct-55	34.1	77	39.1	39.1	34.1	0	0	0	4.9
Nov-55	15	52.1	34.5	73.6	15	0	0	0	3.2
Dec-55	8.3	53.3	-8.3	67.5	6.1	2.2	53.3	0	0.3
Jan-56	8.9	42.9	-8.9	61.5	6	2.9	96.2	0	0.1
Feb-56	10.8	46.5	-10.8	54.8	6.7	4.2	142.7	0	0.1
Mar-56	17.5	76.7	-17.5	45.2	9.6	7.9	219.4	0	0
Apr-56	33.1	69.3	142.5	100	33.1	0	109.7	87.7	47.3
May-56	58.4	114	104.8	100	58.4	0	54.8	104.8	80
Jun-56	102	38.9	-37.6	62.4	102	0	27.4	0	39.1
Jul-56	108.9	108	7.4	69.8	108.9	0	13.7	0	24
Aug-56	93.6	124.7	31.7	100	93.6	0	6.9	1.5	16.3
Sep-56	48.5	40.1	-3.5	96.5	48.5	0	0	0	7
Oct-56	33	22.9	-11.3	85.6	32.6	0.4	0	0	3.7
Nov-56	16.5	27.4	9.6	95.2	16.5	0	0	0	2.6
Dec-56	10.9	66.5	-10.9	84.8	10.3	0.5	66.5	0	0.6
Jan-57	7.5	55.9	-7.5	78.5	6.3	1.1	122.4	0	0.3
Feb-57	11.2	58.2	-11.2	69.7	8.8	2.4	180.6	0	0.2
Mar-57	21.4	27.9	95.4	100	21.4	0	90.3	65.1	34
Apr-57	40.6	86.9	87.1	100	40.6	0	45.2	87.1	64.2
May-57	64.8	72.1	26.2	100	64.8	0	22.6	26.2	46.7
Jun-57	108.5	91.9	-9.9	90.1	108.5	0	11.3	0	26.1
Jul-57	121	11.4	-104.5	0	106.6	14.4	5.6	0	11.3
Aug-57	91.9	61	-28.3	0	63.6	28.3	0	0	8.4
Sep-57	57.7	96.8	34.3	34.3	57.7	0	0	0	7.5
Oct-57	29.9	44.7	12.6	46.8	29.9	0	0	0	3.6
Nov-57	16.7	46	27	73.9	16.7	0	0	0	3
Dec-57	11.6	68.8	-11.6	65.3	8.5	3	68.8	0	0.3
Jan-58	9.2	25.1	-9.2	59.3	6	3.2	93.9	0	0.2
Feb-58	8.9	36.8	-8.9	54	5.3	3.6	130.7	0	0.1
Mar-58	22.2	24.9	66.8	100	22.2	0	65.4	20.8	11.7
Apr-58	41.6	35.8	25.1	100	41.6	0	32.7	25.1	19.6
May-58	65.6	23.9	-26.6	73.4	65.6	0	16.3	0	10.1
Jun-58	89.5	26.7	-56	32.3	74.6	14.9	8.2	0	5.8
Jul-58	121.7	58.4	-58.1	13.5	82.4	39.3	0	0	5.1
Aug-58	97.8	69.1	-32.1	9.2	70	27.8	0	0	4.6
Sep-58	60.2	78.5	14.3	23.5	60.2	0	0	0	4.5
Oct-58	31.4	31.2	-1.8	23.1	30.1	1.4	0	0	1.8
Nov-58	16.7	71.1	50.9	74	16.7	0	0	0	3.7
Dec-58	7.6	25.4	-7.6	68.4	5.6	2	25.4	0	0.1
Jan-59	8.1	65.5	-8.1	62.8	5.5	2.6	90.9	0	0
Feb-59	8.9	74.2	-8.9	57.2	5.6	3.3	165.1	0	0

				Soil			snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
Mar-59	18	59.9	-18	46.9	10.3	7.7	225	0	0
Apr-59	39.1	61	131.3	100	39.1	0	112.5	78.3	42.2
May-59	75.2	41.4	20.3	100	75.2	0	56.3	20.3	31.8
Jun-59	113.3	22.4	-63.9	36.1	113.3	0	28.1	0	16
Jul-59	130.3	27.7	-90	3.6	72.8	57.5	14.1	0	8.8
Aug-59	122.2	38.6	-78.5	0.8	46.5	75.7	7	0	5.6
Sep-59	68.6	69.3	4.2	5	68.6	0	0	0	5.3
Oct-59	31.4	79.5	44.1	49.1	31.4	0	0	0	4.9
Nov-59	14.7	56.1	38.6	87.7	14.7	0	0	0	3.3
Dec-59	10.7	80.5	-10.7	78.3	9.4	1.3	80.5	0	0.2
Jan-60	9.2	68.1	-9.2	71.1	7.2	2	148.6	0	0.1
Feb-60	10.9	64.8	-10.9	63.3	7.7	3.2	213.4	0	0.1
Mar-60	14.1	38.9	-14.1	54.4	8.9	5.2	252.3	0	0
Apr-60	40.1	64.5	147.3	100	40.1	0	126.1	101.8	54.1
May-60	72.5	116.8	101.5	100	72.5	0	63.1	101.5	82.1
Jun-60	102	55.6	-17.6	82.4	102	0	31.5	0	40.9
Jul-60	115.1	103.9	-0.7	81.8	115	0.1	15.8	0	24.2
Aug-60	99	39.6	-53.5	38.1	89.3	9.7	7.9	0	11.5
Sep-60	64.1	6.4	-50.1	19	33	31.1	0	0	5.1
Oct-60	31.8	57.9	23.2	42.2	31.8	0	0	0	5.3
Nov-60	18.2	57.2	36.2	78.3	18.2	0	0	0	4.1
Dec-60	8.4	17	-8.4	71.8	6.6	1.8	17	0	0.6
Jan-61	7.7	10.9	-7.7	66.3	5.5	2.2	27.9	0	0.3
Feb-61	11.9	59.2	-11.9	58.4	7.9	4	87.1	0	0.1
Mar-61	20.5	77	96.2	100	20.5	0	43.6	54.6	31.2
Apr-61	33.5	98.3	81.7	100	33.5	0	21.8	81.7	59.4
May-61	64.4	64	7.3	100	64.4	0	10.9	7.3	34.1
Jun-61	100.7	82.8	-16.6	83.4	100.7	0	5.4	0	19.6
Jul-61	121	80.5	-39.1	50.8	114.5	6.5	0	0	11.7
Aug-61	100.2	56.1	-46.9	27	77.1	23.1	0	0	6.7
Sep-61	71.2	42.4	-30.9	18.6	48.6	22.6	0	0	4.1
Oct-61	36.2	14.7	-22.3	14.5	18.1	18.1	0	0	1.7
Nov-61	15.8	51.6	33.3	47.7	15.8	0	0	0	3.1
Dec-61	10	46.2	-10	42.9	4.8	5.2	46.2	0	0.2
Jan-62	8	67.6	-8	39.5	3.5	4.6	113.8	0	0.1
Feb-62	8.7	86.1	-8.7	36.1	3.4	5.2	199.9	0	0.1
Mar-62	19.9	11.9	-19.9	28.9	7.2	12.7	211.8	0	0
Apr-62	38.6	34.5	100	100	38.6	0	105.9	28.9	16.2
May-62	83.6	11.7	-19.5	80.5	83.6	0	52.9	0	7.8
Jun-62	105.2	65.3	-16.7	67	101.9	3.3	26.5	0	6.9
Jul-62	111.6	90.7	-12.2	58.9	107.6	4	13.2	0	6.3
Aug-62	99.6	76.2	-20.6	46.7	91.1	8.5	6.6	0	4.7
Sep-62	52.9	131.8	78.9	100	52.9	0	0	25.7	19.9
Oct-62	32.6	98	60.5	100	32.6	0	0	60.5	41.8
Nov-62	15	96.8	77	100	15	0	0	77	61.8
Dec-62	8.8	59.9	-8.8	91.2	8.8	0	59.9	0	28.5
Jan-63	7.4	25.9	-7.4	84.4	6.8	0.7	85.8	0	14.2
Feb-63	8	13.5	-8	77.6	6.7	1.2	99.3	0	7.1
Mar-63	21.4	59.7	84.9	100	21.4	0	49.6	62.6	37.8
Apr-63	38.6	54.1	37.6	100	38.6	0	24.8	37.6	38.9

				Soil			snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
May-63	65.6	72.6	15.7	100	65.6	0	12.4	15.7	29.6
Jun-63	108.5	42.7	-61.7	38.3	108.5	0	6.2	0	15.1
Jul-63	123.3	73.7	-47	20.3	94.2	29	0	0	10.2
Aug-63	90.2	57.7	-35.4	13.1	62	28.2	0	0	6.1
Sep-63	51.3	48	-5.7	12.4	46.3	4.9	0	0	4
Oct-63	40	9.1	-31.4	8.5	12.5	27.5	0	0	1.3
Nov-63	19	65.5	43.2	51.7	19	0	0	0	3.7
Dec-63	7.3	42.9	-7.3	47.9	3.8	3.5	42.9	0	0.2
Jan-64	9.9	58.7	-9.9	43.2	4.7	5.1	101.6	0	0.1
Feb-64	9.8	28.7	-9.8	38.9	4.2	5.6	130.3	0	0.1
Mar-64	19.4	87.1	-19.4	31.4	7.6	11.8	217.4	0	0
Apr-64	36.1	73.9	142.8	100	36.1	0	108.7	74.2	40.8
May-64	73.4	41.4	20.3	100	73.4	0	54.3	20.3	30.8
Jun-64	92.9	38.1	-29.5	70.5	92.9	0	27.2	0	16.3
Jul-64	121	101.6	-10.9	62.8	117.8	3.2	13.6	0	12.3
Aug-64	79.2	147.6	67.8	100	79.2	0	6.8	30.6	26.3
Sep-64	51.9	14	-31.8	68.2	51.9	0	0	0	10.1
Oct-64	27.6	46.2	16.3	84.5	27.6	0	0	0	7
Nov-64	16.4	32.8	14.8	99.3	16.4	0	0	0	4
Dec-64	9.5	52.6	-9.5	89.8	9.5	0.1	52.6	0	1.2
Jan-65	8.2	70.1	-8.2	82.4	7.4	0.8	122.7	0	0.6
Feb-65	9.9	107.2	-9.9	74.2	8.2	1.7	229.9	0	0.3
Mar-65	16.4	45	-16.4	62	12.2	4.2	274.9	0	0.1
Apr-65	31.1	75.2	177.8	100	31.1	0	137.4	139.8	73.8
May-65	71.2	46.5	41.7	100	71.2	0	68.7	41.7	58.2
Jun-65	91.8	40.1	-19.3	80.7	91.8	0	34.4	0	29.9
Jul-65	95.6	63.5	-18.1	66.1	92.1	3.5	17.2	0	17.1
Aug-65	85.8	74.9	-6.1	62.1	83.8	2.1	8.6	0	10.7
Sep-65	55.2	66.5	16.5	78.6	55.2	0	0	0	6.8
Oct-65	27.1	104.6	72.3	100	27.1	0	0	50.9	32.4
Nov-65	15.3	81	61.7	100	15.3	0	0	61.7	48.5
Dec-65	11.2	63.8	-11.2	88.8	11.2	0	63.8	0	22.2
Jan-66	7.6	60.7	-7.6	82	6.8	0.9	124.5	0	11.1
Feb-66	10.3	30.5	-10.3	73.6	8.5	1.9	155	0	5.6
Mar-66	21.3	55.6	109	100	21.3	0	77.5	82.6	46.9
Apr-66	33.5	52.8	55.4	100	33.5	0	38.8	55.4	52.4
May-66	55.9	47.2	8.3	100	55.9	0	19.4	8.3	31.4
Jun-66	99.5	72.6	-20.8	79.2	99.5	0	9.7	0	18.2
Jul-66	122.5	15	-98.6	1.1	102	20.5	0	0	8
Aug-66	93	70.4	-26.2	0.8	67.2	25.9	0	0	7.2
Sep-66	51.3	55.1	1.1	1.9	51.3	0	0	0	4.6
Oct-66	28.8	24.4	-5.6	1.8	23.3	5.5	0	0	2.1
Nov-66	16.5	142.7	119.1	100	16.5	0	0	20.9	18
Dec-66	9.6	84.8	-9.6	90.4	9.6	0	84.8	0	5.5
Jan-67	10.2	55.4	-10.2	81.2	9.2	1	140.2	0	2.7
Feb-67	8.4	42.4	-8.4	74.4	6.8	1.6	182.6	0	1.4
Mar-67	17.5	21.1	-17.5	61.4	13	4.5	203.7	0	0.7
Apr-67	36.8	99.1	159.2	100	36.8	0	101.8	120.7	65.6
May-67	52.8	49	44.6	100	52.8	0	50.9	44.6	55.1
Jun-67	109.2	150.9	59.6	100	109.2	0	25.5	59.6	63.7

				Soil			snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
Jul-67	105.6	65	-31.1	68.9	105.6	0	12.7	0	31.3
Aug-67	84.8	45.7	-35	44.8	73.9	10.9	6.4	0	16.3
Sep-67	51.9	68.1	19.1	63.9	51.9	0	0	0	10.4
Oct-67	29.7	75.2	41.7	100	29.7	0	0	5.7	10.1
Nov-67	14	39.4	23.4	100	14	0	0	23.4	16.8
Dec-67	10.4	69.6	-10.4	89.6	10.4	0	69.6	0	7.4
Jan-68	7.3	82	-7.3	83	6.6	0.8	151.6	0	3.7
Feb-68	8.9	37.8	-8.9	75.6	7.4	1.5	189.4	0	1.9
Mar-68	20.8	57.4	128.5	100	20.8	0	94.7	104.1	55.8
Apr-68	40.3	30.2	35.7	100	40.3	0	47.3	35.7	45.8
May-68	56.9	101.3	63	100	56.9	0	23.7	63	58.7
Jun-68	91.2	57.9	-24.4	75.6	91.2	0	11.8	0	29.7
Jul-68	109.6	58.2	-48.4	39.1	97.8	11.8	5.9	0	16.3
Aug-68	89.1	163.6	72.2	100	89.1	0	0	11.3	20.5
Sep-68	60.2	88.1	23.5	100	60.2	0	0	23.5	22.3
Oct-68	32.2	41.1	6.8	100	32.2	0	0	6.8	14.4
Nov-68	15.2	93.2	73.3	100	15.2	0	0	73.3	47.5
Dec-68	8.7	80	-8.7	91.3	8.7	0	80	0	21.4
Jan-69	8.5	50.3	-8.5	83.6	7.7	0.7	130.3	0	10.7
Feb-69	10.4	15.7	-10.4	74.9	8.7	1.7	146	0	5.4
Mar-69	18.2	35.6	-18.2	61.2	13.7	4.6	181.6	0	2.7
Apr-69	38.4	89.9	137.8	100	38.4	0	90.8	99	55.4
May-69	62.5	75.4	54.6	100	62.5	0	45.4	54.6	56.5
Jun-69	88.4	38.9	-28.8	71.2	88.4	0	22.7	0	28.3
Jul-69	113.7	107.4	-0.3	71	113.6	0.1	11.4	0	18.5
Aug-69	102.1	56.6	-42.7	40.7	89.7	12.4	5.7	0	9.4
Sep-69	56.6	15	-36.7	25.8	34.9	21.8	0	0	4
Oct-69	28.8	49	17.7	43.5	28.8	0	0	0	4.1
Nov-69	15.9	71.1	51.7	95.2	15.9	0	0	0	4.4
Dec-69	7.9	61.2	-7.9	87.7	7.5	0.4	61.2	0	0.4
Jan-70	6.4	25.7	-6.4	82	5.6	0.8	86.9	0	0.2
Feb-70	9.5	29.7	-9.5	74.2	7.8	1.7	116.6	0	0.1
Mar-70	17.7	43.7	-17.7	61.1	13.1	4.6	160.3	0	0.1
Apr-70	37.9	81.3	119.5	100	37.9	0	80.2	80.6	44.4
May-70	65.6	56.6	28.2	100	65.6	0	40.1	28.2	37.1
Jun-70	95.3	38.1	-39	61	95.3	0	20	0	19
Jul-70	117.3	113.5	0.6	61.5	117.3	0	10	0	14.2
Aug-70	94.8	113.3	17.9	79.4	94.8	0	5	0	9.9
Sep-70	55.9	61.7	7.7	87.1	55.9	0	0	0	5.2
Oct-70	32.2	63.8	28.4	100	32.2	0	0	15.5	12
Nov-70	16.7	45	26.1	100	16.7	0	0	26.1	19.7
Dec-70	8.5	80.5	-8.5	91.5	8.5	0	80.5	0	8.7
Jan-71	7.1	29.2	-7.1	85	6.5	0.6	109.7	0	4.4
Feb-71	10.4	71.1	-10.4	76.2	8.8	1.6	180.8	0	2.2
Mar-71	16.4	33.5	-16.4	63.7	12.5	3.9	214.3	0	1.1
Apr-71	33.5	24.9	97.3	100	33.5	0	107.2	61	32.3
May-71	64	34.8	22.6	100	64	0	53.6	22.6	28.6
Jun-71	100.1	77	-0.2	99.8	100.1	0	26.8	0	17.3
Jul-71	106.2	78.5	-18.2	81.6	106.2	0	13.4	0	10.6
Aug-71	89.6	126	36.8	100	89.6	0	6.7	18.4	18.8

				Soil			snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
Sep-71	61.4	32.5	-23.8	76.2	61.4	0	0	0	7.9
Oct-71	37.6	37.6	-1.9	74.8	37.2	0.5	0	0	5
Nov-71	15.2	35.1	18.2	92.9	15.2	0	0	0	3.3
Dec-71	10.8	92.7	-10.8	82.9	10	0.8	92.7	0	0.8
Jan-72	8.7	37.8	-8.7	75.7	7.2	1.5	130.5	0	0.4
Feb-72	8.7	59.7	-8.7	69.1	6.6	2.1	190.2	0	0.2
Mar-72	15.6	96.8	-15.6	58.3	10.8	4.8	287	0	0.1
Apr-72	30	52.8	163.7	100	30	0	143.5	122	63.7
May-72	69.8	35.3	35.4	100	69.8	0	71.8	35.4	50
Jun-72	86.8	113	56.4	100	86.8	0	35.9	56.4	58
Jul-72	111.6	34.5	-60.9	39.1	111.6	0	17.9	0	27.9
Aug-72	88	74.9	-7.9	36	83.2	4.8	9	0	16.8
Sep-72	55.9	84.1	32.9	69	55.9	0	0	0	10.7
Oct-72	25.5	98.8	68.4	100	25.5	0	0	37.4	26.9
Nov-72	13.8	72.1	54.7	100	13.8	0	0	54.7	42
Dec-72	9.7	95	-9.7	90.3	9.7	0	95	0	19.2
Jan-73	9.7	34.3	-9.7	81.6	8.8	0.9	129.3	0	9.6
Feb-73	8.9	36.3	-8.9	74.3	7.3	1.6	165.6	0	4.8
Mar-73	24.9	121.2	173.1	100	24.9	0	82.8	147.4	82.1
Apr-73	37.7	62.2	62.8	100	37.7	0	41.4	62.8	72.6
May-73	61.3	87.9	42.9	100	61.3	0	20.7	42.9	60.6
Jun-73	103.2	67.8	-28.5	71.5	103.2	0	10.4	0	31.5
Jul-73	118.8	62.5	-54.2	32.7	103.3	15.4	5.2	0	17.2
Aug-73	108.6	29.2	-75.7	7.9	57.7	50.9	0	0	8.5
Sep-73	57	53.3	-6.3	7.4	51.1	5.8	0	0	6.2
Oct-73	33.4	124.7	85	92.5	33.4	0	0	0	8
Nov-73	16.2	93	72.2	100	16.2	0	0	64.7	37.9
Dec-73	8.8	76.5	-8.8	91.2	8.8	0	76.5	0	16.6
Jan-74	8.8	66.8	-8.8	83.2	8	0.8	143.3	0	8.3
Feb-74	8.7	45.2	-8.7	75.9	7.3	1.5	188.5	0	4.2
Mar-74	19.2	56.9	-19.2	61.4	14.5	4.6	245.4	0	2.1
Apr-74	38.9	92.2	171.4	100	38.9	0	122.7	132.8	72
May-74	57.6	140	136.7	100	57.6	0	61.4	136.7	109.1
Jun-74	92.3	127.3	59.3	100	92.3	0	30.7	59.3	87
Jul-74	115.1	58.7	-44	56	115.1	0	15.3	0	43.3
Aug-74	94.8	14.5	-73.3	14.9	62.5	32.3	7.7	0	20.9
Sep-74	51	46.5	0.9	15.8	51	0	0	0	12.4
Oct-74	26.7	24.1	-3.8	15.2	23.5	3.2	0	0	6.2
Nov-74	15.7	74.7	55.3	70.5	15.7	0	0	0	6.3
Dec-74	10.8	45.5	-10.8	62.9	7.6	3.2	45.5	0	1.3
Jan-75	10.2	51.6	-10.2	56.4	6.4	3.8	97.1	0	0.6
Feb-75	11.2	72.4	-11.2	50.1	6.3	4.9	169.5	0	0.3
Mar-75	17.5	63.8	-17.5	41.3	8.7	8.7	233.3	0	0.2
Apr-75	30	69.6	152.8	100	30	0	116.6	94.2	50.6
May-75	81.6	64.3	37.9	100	81.6	0	58.3	37.9	45.7
Jun-75	101.3	62.5	-12.8	87.2	101.3	0	29.2	0	24.4
Jul-75	124.8	51.3	-61.5	33.6	116.9	7.9	14.6	0	13.2
Aug-75	96	109	14.9	48.5	96	0	7.3	0	10.8
Sep-75	48.5	65.3	20.8	69.3	48.5	0	0	0	5.9
Oct-75	30.8	54.9	21.3	90.6	30.8	0	0	0	4.1

				Soil			snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
Nov-75	19.2	54.9	32.9	100	19.2	0	0	23.5	15.2
Dec-75	8.6	69.9	-8.6	91.4	8.6	0	69.9	0	6.2
Jan-76	6.8	52.3	-6.8	85.2	6.2	0.6	122.2	0	3.1
Feb-76	12	59.2	-12	74.9	10.3	1.8	181.4	0	1.6
Mar-76	20.6	116.3	180.5	100	20.6	0	90.7	155.5	84.3
Apr-76	40.6	72.1	73.3	100	40.6	0	45.4	73.3	79.5
May-76	60.2	114.6	71.4	100	60.2	0	22.7	71.4	79.4
Jun-76	104.5	83.3	-14.1	85.9	104.5	0	11.3	0	41
Jul-76	103.6	81.8	-20.2	68.5	100.8	2.8	5.7	0	22.5
Aug-76	88.5	64.8	-21.3	53.9	81.8	6.7	0	0	12.4
Sep-76	52.6	69.9	13.8	67.8	52.6	0	0	0	8.1
Oct-76	25.1	64.5	36.1	100	25.1	0	0	3.9	7.5
Nov-76	13.1	11.7	-2	98	13.1	0	0	0	2.7
Dec-76	7.3	36.1	-7.3	90.8	7.2	0.1	36.1	0	1.1
Jan-77	6.1	36.9	-6.1	85.3	5.6	0.6	73	0	0.5
Feb-77	9.9	26.3	-9.9	76.8	8.4	1.5	99.3	0	0.3
Mar-77	23.4	71.9	94.6	100	23.4	0	49.6	71.4	39.4
Apr-77	39.8	70.3	51.8	100	39.8	0	24.8	51.8	47.3
May-77	76.7	28.3	-37.4	62.6	76.7	0	12.4	0	23.3
Jun-77	92.9	104	12.1	74.7	92.9	0	6.2	0	16.2
Jul-77	116.6	118.5	2.2	76.9	116.6	0	0	0	11.4
Aug-77	85.3	103.3	12.8	89.8	85.3	0	0	0	7.9
Sep-77	54.9	154.2	91.6	100	54.9	0	0	81.4	49.8
Oct-77	28.3	69.4	37.7	100	28.3	0	0	37.7	43.3
Nov-77	16.6	85.9	65	100	16.6	0	0	65	56.7
Dec-77	8.8	102.3	-8.8	91.2	8.8	0	102.3	0	26.2
Jan-78	7.4	69.2	-7.4	84.4	6.8	0.7	171.5	0	13.1
Feb-78	7.8	9.1	-7.8	77.8	6.5	1.2	180.6	0	6.6
Mar-78	16	39.8	-16	65.4	12.5	3.5	220.4	0	3.3
Apr-78	32.3	63.9	138.6	100	32.3	0	110.2	104	56.8
May-78	70.7	68.2	49.2	100	70.7	0	55.1	49.2	54.8
Jun-78	92.9	25.2	-41.4	58.6	92.9	0	27.5	0	27
Jul-78	115.8	42.5	-61.7	22.4	90.3	25.6	13.8	0	15
Aug-78	94.8	63.6	-27.5	16.3	73.5	21.3	6.9	0	9.6
Sep-78	53.2	134.3	81.3	97.5	53.2	0	0	0	9.9
Oct-78	28.6	56.2	24.8	100	28.6	0	0	22.3	15.6
Nov-78	15.6	52.9	34.7	100	15.6	0	0	34.7	26.4
Dec-78	9.8	61.1	-9.8	90.2	9.8	0	61.1	0	11.9
Jan-79	7.8	69.6	-7.8	83.1	7.1	0.8	130.7	0	5.9
Feb-79	7.3	33.5	-7.3	77	6.1	1.2	164.2	0	3
Mar-79	22.5	48.1	105.3	100	22.5	0	82.1	82.3	45
Apr-79	35	88.6	90.2	100	35	0	41	90.2	70.9
May-79	63.2	99.2	51.5	100	63.2	0	20.5	51.5	63.9
Jun-79	95.8	71.8	-17.4	82.6	95.8	0	10.3	0	33.1
Jul-79	116.6	68	-46.8	43.9	108.4	8.1	5.1	0	18.1
Aug-79	88.5	74.2	-12.9	38.3	81.3	7.2	0	0	11.1
Sep-79	54.2	44.5	-11.9	33.7	46.8	7.4	0	0	5.9
Oct-79	29.2	84.2	50.8	84.5	29.2	0	0	0	6.1
Nov-79	16.3	96.5	75.4	100	16.3	0	0	59.9	35.7
Dec-79	10.9	101	-10.9	89.1	10.9	0	101	0	15.4

				Soil			snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
Jan-80	9.2	37.8	-9.2	80.9	8.2	1	138.8	0	7.7
Feb-80	8.8	16.1	-8.8	73.7	7.1	1.7	154.9	0	3.9
Mar-80	18	82.8	-18	60.4	13.3	4.7	237.7	0	1.9
Apr-80	37	111.9	188.2	100	37	0	118.8	148.6	80.9
May-80	73.4	48.7	32.3	100	73.4	0	59.4	32.3	56.2
Jun-80	84.7	89.2	29.8	100	84.7	0	29.7	29.8	46.2
Jul-80	115.8	182.3	72.2	100	115.8	0	14.9	72.2	66.1
Aug-80	104.7	37.3	-61.8	38.2	104.7	0	7.4	0	30.4
Sep-80	54.6	53.1	3.3	41.5	54.6	0	0	0	16.9
Oct-80	26.6	88.7	57.7	99.2	26.6	0	0	0	11.6
Nov-80	14.7	35.3	18.8	100	14.7	0	0	18	14.3
Dec-80	7.8	64.7	-7.8	92.2	7.8	0	64.7	0	6.3
Jan-81	6.7	11.9	-6.7	86	6.2	0.5	76.6	0	3.1
Feb-81	12.6	66.2	-12.6	75.2	10.8	1.8	142.8	0	1.6
Mar-81	20.4	17.8	-3.5	72.6	19.5	0.9	142.8	0	1.7
Apr-81	40.3	49.7	78.3	100	40.3	0	71.4	50.9	28.3
May-81	64.8	58.1	26.1	100	64.8	0	35.7	26.1	28.8
Jun-81	96.4	61.5	-20.2	79.8	96.4	0	17.8	0	16
Jul-81	117.3	66.6	-45.1	43.8	108.2	9.1	8.9	0	9.8
Aug-81	93	128.5	38	81.8	93	0	0	0	9.7
Sep-81	52.2	103.3	45.9	100	52.2	0	0	27.7	20.6
Oct-81	25.8	134.9	102.4	100	25.8	0	0	102.4	65.7
Nov-81	16	57.8	38.9	100	16	0	0	38.9	51.8
Dec-81	9.8	34	-9.8	90.2	9.8	0	34	0	24.5
Jan-82	6.8	54.3	-6.8	84.1	6.1	0.7	88.3	0	12.2
Feb-82	8.9	28.3	-8.9	76.6	7.5	1.4	116.6	0	6.1
Mar-82	18	64.8	-18	62.8	13.8	4.2	181.4	0	3.1
Apr-82	33.7	43.1	97.9	100	33.7	0	90.7	60.8	34.1
May-82	75.7	45.1	12.5	100	75.7	0	45.3	12.5	24.5
Jun-82	84.7	112.5	44.9	100	84.7	0	22.7	44.9	39.2
Jul-82	119.5	31.1	-78.6	21.4	119.5	0	11.3	0	18.3
Aug-82	81.7	120.1	38.1	59.5	81.7	0	5.7	0	14.4
Sep-82	53.9	128.9	74.2	100	53.9	0	0	33.7	27.5
Oct-82	31.4	43.5	9.9	100	31.4	0	0	9.9	17.6
Nov-82	16.5	94.8	73.6	100	16.5	0	0	73.6	49.3
Dec-82	12.2	80.9	64.6	100	12.2	0	0	64.6	58.6
Jan-83	9.8	33.7	-9.8	90.2	9.8	0	33.7	0	27.3
Feb-83	11.8	40.6	-11.8	79.5	10.7	1.2	74.3	0	13.6
Mar-83	21.2	77.3	89.4	100	21.2	0	37.2	69	45.2
Apr-83	35.4	83.2	62.2	100	35.4	0	18.6	62.2	55.9
May-83	58.4	99.5	45.5	100	58.4	0	9.3	45.5	53.6
Jun-83	102.6	33	-62	38	102.6	0	0	0	26
Jul-83	130.3	18.3	-112.9	0	55.4	74.9	0	0	13.1
Aug-83	103.4	112.2	3.2	3.2	103.4	0	0	0	11.7
Sep-83	60.6	54.9	-8.5	2.9	52.4	8.2	0	0	5.8
Oct-83	29.9	71.8	38.3	41.2	29.9	0	0	0	5.1
Nov-83	15.9	89.1	68.8	100	15.9	0	0	10	10.2
Dec-83	7.9	82	-7.9	92.1	7.9	0	82	0	2.9
Jan-84	6.9	30.2	-6.9	85.7	6.4	0.5	112.2	0	1.4
Feb-84	13.1	59	-13.1	74.6	11.2	1.9	171.2	0	0.7

				Soil			snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
Mar-84	15.3	59.5	-15.3	63.1	11.4	3.9	230.7	0	0.4
Apr-84	39.4	58.7	131.8	100	39.4	0	115.4	94.9	50.6
May-84	59.1	102.8	96.3	100	59.1	0	57.7	96.3	77.1
Jun-84	102	48.1	-27.4	72.6	102	0	28.8	0	38.4
Jul-84	111.6	63.3	-37.1	45.7	101.4	10.2	14.4	0	21.2
Aug-84	103.4	63.8	-35.6	29.4	84.1	19.3	7.2	0	12.2
Sep-84	51	74.7	27.2	56.6	51	0	0	0	8.2
Oct-84	32.6	26.1	-7.8	52.2	29.2	3.4	0	0	3.6
Nov-84	15.3	69.9	51.1	100	15.3	0	0	3.3	6.3
Dec-84	11.6	61.3	-11.6	88.4	11.6	0	61.3	0	1.4
Jan-85	7.5	76.6	-7.5	81.8	6.6	0.9	137.9	0	0.7
Feb-85	10	83.1	-10	73.6	8.2	1.8	221	0	0.3
Mar-85	20.8	78.6	164.4	100	20.8	0	110.5	138	73.1
Apr-85	39.6	33.1	47.1	100	39.6	0	55.2	47.1	59.8
May-85	70.3	75.9	29.4	100	70.3	0	27.6	29.4	47.6
Jun-85	87.3	37.3	-38.1	61.9	87.3	0	13.8	0	23.8
Jul-85	110.2	91.5	-16.4	51.8	104	6.3	6.9	0	15.5
Aug-85	93	152.5	58.7	100	93	0	0	10.5	18.3
Sep-85	61.8	57.6	-7	93	61.8	0	0	0	8.2
Oct-85	30.8	52.3	18.8	100	30.8	0	0	11.8	11.2
Nov-85	16	161.8	137.7	100	16	0	0	137.7	81.3
Dec-85	8.8	35.9	-8.8	91.2	8.8	0	35.9	0	36.6
Jan-86	8.9	26.5	-8.9	83.1	8.2	0.8	62.4	0	18.3
Feb-86	9.8	32	-9.8	74.9	8.1	1.7	94.4	0	9.1
Mar-86	21.2	48.8	72.4	100	21.2	0	47.2	47.3	30.7
Apr-86	40.3	54	34.6	100	40.3	0	23.6	34.6	34.1
May-86	75.7	75.2	7.5	100	75.7	0	11.8	7.5	23.2
Jun-86	91.2	67.4	-21.3	78.7	91.2	0	5.9	0	13.1
Jul-86	120.2	122.3	1.8	80.6	120.2	0	0	0	11
Aug-86	87.5	146.2	51.4	100	87.5	0	0	32	25.7
Sep-86	53.6	212.3	148.1	100	53.6	0	0	148.1	93.9
Oct-86	29.5	54.8	22.5	100	29.5	0	0	22.5	55.6
Nov-86	14.3	44.4	27.9	100	14.3	0	0	27.9	42.6
Dec-86	10.9	67.3	-10.9	89.1	10.9	0	67.3	0	20.2
Jan-87	9.5	56.6	-9.5	80.7	8.5	1	123.9	0	10.1
Feb-87	10	14.8	-10	72.6	8.1	1.9	138.7	0	5.1
Mar-87	22.8	44.2	88.5	100	22.8	0	69.4	61.1	35.3
Apr-87	43.5	49.8	38.5	100	43.5	0	34.7	38.5	38.3
May-87	77.6	29.6	-32.2	67.8	77.6	0	17.3	0	19.4
Jun-87	111.2	68.3	-37.7	42.3	99.1	12.1	8.7	0	12.4
Jul-87	132	108.1	-20.6	33.6	120.1	11.9	0	0	9.9
Aug-87	94.2	52.3	-44.5	18.6	64.6	29.6	0	0	4.9
Sep-87	56.3	108	46.3	65	56.3	0	0	0	6.5
Oct-87	26.6	48.1	19.1	84.1	26.6	0	0	0	3
Nov-87	16	83.4	63.3	100	16	0	0	47.3	28.1
Dec-87	11.5	47.4	-11.5	88.5	11.5	0	47.4	0	12
Jan-88	9.6	21.5	-9.6	80	8.5	1.1	68.9	0	6
Feb-88	9.4	64.6	-9.4	72.5	7.5	1.9	133.5	0	3
Mar-88	19.4	23.6	-19.4	58.5	14.1	5.3	157.1	0	1.5
Apr-88	36.3	55.2	94.7	100	36.3	0	78.6	53.1	30.1

				Soil		snow			
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
May-88	73.9	39.6	3	100	73.9	0	39.3	3	17.2
Jun-88	98.9	25	-55.5	44.5	98.9	0	19.6	0	8.8
Jul-88	135.3	109.7	-21.2	35.1	123.5	11.8	9.8	0	9.3
Aug-88	105.3	37.2	-60.2	14	66.3	39.1	0	0	3.8
Sep-88	56.3	70.6	10.8	24.8	56.3	0	0	0	4.5
Oct-88	26.9	67.4	37.1	61.9	26.9	0	0	0	3.8
Nov-88	17.1	58.1	38.1	100	17.1	0	0	0	3.1
Dec-88	9.8	31.5	-9.8	90.2	9.8	0	31.5	0	0.1
Jan-89	11	25.9	-11	80.2	9.9	1.1	57.4	0	0.1
Feb-89	9.6	19	-9.6	72.5	7.7	1.9	76.4	0	0
Mar-89	17.9	37.1	-17.9	59.6	13	4.9	113.5	0	0
Apr-89	34.5	41.1	61.2	100	34.5	0	56.8	20.8	12.5
May-89	69.8	79.2	33.8	100	69.8	0	28.4	33.8	26
Jun-89	103.2	94.7	0.9	100	103.2	0	14.2	0.9	16.2
Jul-89	124	70.4	-50.1	49.9	124	0	7.1	0	9.3
Aug-89	94.8	39.6	-50.1	24.9	69.7	25.1	0	0	4.9
Sep-89	57	44.1	-15.1	21.2	45.7	11.3	0	0	3.6
Oct-89	31.6	76.2	40.8	61.9	31.6	0	0	0	4.5
Nov-89	14.5	78.5	60	100	14.5	0	0	22	15.3
Dec-89	6.3	23.8	-6.3	93.7	6.3	0	23.8	0	5.7
Jan-90	12	36.7	-12	82.5	11.3	0.8	60.5	0	2.8
Feb-90	11.5	76.9	-11.5	73	9.5	2	137.4	0	1.4
Mar-90	21.3	28.7	74.7	100	21.3	0	68.7	47.6	26
Apr-90	42.1	53	42.6	100	42.1	0	34.4	42.6	36.2
May-90	64	86.6	35.4	100	64	0	17.2	35.4	38.8
Jun-90	105.2	69.4	-30.7	69.3	105.2	0	8.6	0	20.7
Jul-90	119.5	68.4	-45.9	37.5	105.4	14.1	0	0	12
Aug-90	98.4	112.6	8.6	46.1	98.4	0	0	0	9.9
Sep-90	55.6	42.8	-14.9	39.2	47.5	8	0	0	4.3
Oct-90	31	87.8	52.4	91.6	31	0	0	0	5.5
Nov-90	17.2	39.6	20.4	100	17.2	0	0	12	8.5
Dec-90	11	112.8	-11	89	11	0	112.8	0	3.3
Jan-91	8.9	33.6	-8.9	81.1	7.9	1	146.4	0	1.6
Feb-91	12.3	23.5	-12.3	71.1	10	2.3	169.9	0	0.8
Mar-91	22.5	98.1	155.6	100	22.5	0	85	126.7	68.7
Apr-91	43.2	115.4	108.9	100	43.2	0	42.5	108.9	92.1
May-91	85.7	83.6	15	100	85.7	0	21.2	15	54.8
Jun-91	114	24.4	-80.2	19.8	114	0	10.6	0	26.5
Jul-91	125.6	91	-33.8	13.1	98.4	27.1	5.3	0	17.2
Aug-91	103.4	91.4	-11.2	11.6	93.6	9.8	0	0	10.9
Sep-91	54.2	52.1	-4.7	11.1	50	4.2	0	0	5.8
Oct-91	32.8	46.3	11.2	22.2	32.8	0	0	0	3.9
Nov-91	15	56.3	38.5	60.7	15	0	0	0	3.6
Dec-91	10.1	44.7	-10.1	54.6	6.1	4	44.7	0	0.4
Jan-92	9.7	37.2	-9.7	49.3	5.3	4.4	81.9	0	0.2
Feb-92	11.2	35	-11.2	43.7	5.5	5.7	116.9	0	0.1
Mar-92	19	21.7	-19	35.4	8.3	10.7	138.6	0	0
Apr-92	35.6	133.8	160.8	100	35.6	0	69.3	96.2	54.8
May-92	66.9	69.7	34	100	66.9	0	34.6	34	44.5
Jun-92	91.2	37.2	-38.5	61.5	91.2	0	17.3	0	22.4

				Soil			snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
Jul-92	99.8	134.5	36.6	98.1	99.8	0	8.7	0	17
Aug-92	84.8	154.4	70.6	100	84.8	0	0	68.6	47.2
Sep-92	53.6	98.4	39.9	100	53.6	0	0	39.9	44.6
Oct-92	27.2	66	35.5	100	27.2	0	0	35.5	40.9
Nov-92	15.4	107.2	86.5	100	15.4	0	0	86.5	67.4
Dec-92	10.6	56.3	-10.6	89.4	10.6	0	56.3	0	31
Jan-93	9.9	70.6	-9.9	80.6	8.8	1	126.9	0	15.5
Feb-93	8.5	26.6	-8.5	73.7	6.9	1.7	153.5	0	7.8
Mar-93	18	31	-18	60.4	13.3	4.7	184.5	0	3.9
Apr-93	37.9	85.4	135.5	100	37.9	0	92.2	95.9	54.2
May-93	66.1	51.6	29.1	100	66.1	0	46.1	29.1	42.1
Jun-93	95.3	133.8	54.9	100	95.3	0	23.1	54.9	53.9
Jul-93	125.6	87.7	-30.7	69.3	125.6	0	11.5	0	28
Aug-93	103.4	39.9	-59.7	27.9	85	18.3	5.8	0	13.8
Sep-93	50	59.2	12	39.9	50	0	0	0	8.9
Oct-93	28.1	71	39.3	79.2	28.1	0	0	0	6.5
Nov-93	15.7	65.2	46.3	100	15.7	0	0	25.5	17.5
Dec-93	9.9	28.8	-9.9	90.1	9.9	0	28.8	0	7.1
Jan-94	5.9	61	-5.9	84.8	5.3	0.6	89.8	0	3.6
Feb-94	8.6	20.2	-8.6	77.6	7.3	1.3	110	0	1.8
Mar-94	19.4	51.2	-19.4	62.5	15	4.4	161.2	0	0.9
Apr-94	39.6	96	132.2	100	39.6	0	80.6	94.7	52.6
May-94	64.8	78.8	50.3	100	64.8	0	40.3	50.3	53
Jun-94	107.8	54.4	-36	64	107.8	0	20.2	0	27.3
Jul-94	124	83	-35.1	41.5	111.4	12.6	10.1	0	16.4
Aug-94	89.1	60.1	-27	30.3	73.3	15.8	5	0	9.1
Sep-94	57.7	51.4	-3.8	29.2	55	2.7	0	0	5.6
Oct-94	32	27.4	-6	27.4	27.8	4.2	0	0	2.9
Nov-94	18.1	84.9	62.6	90	18.1	0	0	0	5
Dec-94	11.6	51.4	-11.6	79.6	10.5	1.2	51.4	0	0.4
Jan-95	10.4	133.3	-10.4	71.3	8.3	2.1	184.7	0	0.2
Feb-95	9.1	20.8	-9.1	64.8	6.5	2.6	205.5	0	0.1
Mar-95	22.9	50.8	128.1	100	22.9	0	102.8	92.8	49
Apr-95	32.5	76.6	91.7	100	32.5	0	51.4	91.7	72.9
May-95	71.2	87	37.2	100	71.2	0	25.7	37.2	57.5
Jun-95	113.3	52.1	-51	49	113.3	0	12.8	0	29.2
Jul-95	127.1	55.4	-68.1	15.6	92.4	34.7	6.4	0	16.1
Aug-95	108	135.4	27.1	42.7	108	0	0	0	13.4
Sep-95	51.3	27.5	-25.2	32	36.9	14.4	0	0	4.7
Oct-95	34.1	131.8	91.2	100	34.1	0	0	23.1	19.8
NOV-95	13.8	121.6	101.8	100	13.8	0	0	101.8	63.6
Dec-95	8.5	35.8	-8.5	91.5	8.5	0	35.8	0	28.7
Jan-96	8.3	72.6	-8.3	83.8	7.6	0.7	108.4	0	14.4
Feb-96	10	38.2	-10	/5.5	8.4	1.6	145.6	0	1.2
Iviar-96	1/.1	30.2	-1/.1	62.5	12.9	4.2	182.8	1174	3.6
Apr-96	33.1	101.6	154.8	100	33.1	0	91.4	±1/.4	05.0
IVIAY-96	104 5	90.6	0/./	100	104 5	0	45.7	6/./	58.6
Juli-96	104.5	118	30.4	100	104.5	0	22.8	30.4	53.2
Jui-96	100.2	97.4	-0.3	93.7	110.2	0	11.4	0	28.5
Aug-96	100.9	48.2	-49.4	47.5	97.8	3.1	5./	0	14.2

				Soil			snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
Sep-96	59.9	166.2	103.7	100	59.9	0	0	51.2	39.8
Oct-96	30.5	75.8	41.5	100	30.5	0	0	41.5	40.3
Nov-96	13.7	29.8	14.6	100	13.7	0	0	14.6	27.1
Dec-96	11.4	95.2	-11.4	88.6	11.4	0	95.2	0	12.8
Jan-97	8.5	64.6	-8.5	81.1	7.5	1	159.8	0	6.4
Feb-97	11.7	78.6	-11.7	71.5	9.5	2.2	238.4	0	3.2
Mar-97	18.7	69.8	-18.7	58.2	13.4	5.3	308.2	0	1.6
Apr-97	36.1	29.2	145.8	100	36.1	0	154.1	103.9	54.2
May-97	56.6	65.4	82.6	100	56.6	0	77	82.6	71
Jun-97	112.6	50.8	-25.8	74.2	112.6	0	38.5	0	36.4
Jul-97	119.5	30	-71.7	21	101	18.5	19.3	0	18.4
Aug-97	90.8	71.8	-12.9	18.3	80.6	10.2	9.6	0	12.1
Sep-97	56.3	48	-1	18.1	55.4	0.9	0	0	6.6
Oct-97	31	35.2	2.4	20.5	31	0	0	0	3.9
Nov-97	15.1	55	37.2	57.6	15.1	0	0	0	3.8
Dec-97	11.1	30.2	-11.1	51.3	6.4	4.7	30.2	0	0.5
Jan-98	11	97.2	-11	45.6	5.7	5.4	127.4	0	0.3
Feb-98	14.1	45.8	-14.1	39.2	6.4	7.6	173.2	0	0.1
Mar-98	23.2	98.4	156.9	100	23.2	0	86.6	96	53
Apr-98	42.9	57.2	54.7	100	42.9	0	43.3	54.7	54.3
May-98	89.5	71.8	0.4	100	89.5	0	21.6	0.4	29.5
Jun-98	106.5	80.5	-19.2	80.8	106.5	0	10.8	0	17
Jul-98	121.7	45.4	-73.2	21.7	107.7	14.1	5.4	0	8.7
Aug-98	107.3	26.8	-76.4	5.1	47.4	59.9	0	0	4.6
Sep-98	66.5	38.4	-30	3.6	38	28.5	0	0	3.5
Oct-98	33.6	24	-10.8	3.2	23.2	10.5	0	0	2
Nov-98	17.5	33.6	14.4	17.6	17.5	0	0	0	2.1
Dec-98	12.2	63	47.6	65.2	12.2	0	0	0	3.4
Jan-99	8.6	107	-8.6	59.6	5.6	3	107	0	0.1
Feb-99	13	27.4	-13	51.9	7.7	5.2	134.4	0	0.1
Mar-99	20.6	23.4	68.8	100	20.6	0	67.2	20.7	11.5
Apr-99	41.6	48.9	38.4	100	41.6	0	33.6	38.4	26.8
May-99	81.6	39	-27.7	/2.3	81.6	0	16.8	0	14.2
Jun-99	116.9	66.2	-45.6	39.3	104.2	12.6	8.4	0	9.4
Jui-99	147.5	44.4	-97	1.2	88.7	58.8	0	0	5.3
Aug-99	98.4	59	-42.3	0.7	50.0	41.8	0	0	4.5
Sep-99	05.7	61.0	10.3	20.0	05.7	0	0	0	4.8 2 F
0CL-99	30.8 10 F	01.0	27.9	38.8	30.8 10 F	0	0	0	3.5
NOV-99	18.5	78.Z	22.8	94.0	10.5	06	26 5	0	4.1
Jap 00	0.0	20.3	-11.2	76.6	10.0	0.0	20.3	0	0.1
Jaii-00	0.0	29.Z	-0.0	70.0 67 E	7.4	1.4	104.1	0	0
Feb-00	26.0	40.4	-11.0	100	9.1	2.0	104.1	10.5	6.2
Apr 00	20.9	70.2	43 62 1	100	20.9	0	32	10.3 62.2	20.2
May-00	50.Z	19.3	55.2	100	50.Z	0	20 12	55.2	50.Z
	102	160 2	53.5 65 0	100	102	0	۲2 51	55.5 65 2	۲.1 C
	112 7	22 Q	_75 1	2/10	112 7	0	0.5	05.5	203.5 20.2
Διισ-ΟΟ	100.2	28	-64.1	24.9 & Q	52.1	18 2	0	0	15.7
Sen-00	57.7		×-0-1 8 8	17 7	57.1	-+0.2 N	0	0	10.4
Oct-00	34 5	17.6	-17 8	14.6	19.9	14.6	0	0	<u>10.4</u>
500	JJ	17.0	17.0	14.0	15.5	14.0	0	0	

				Soil			snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
Nov-00	16.2	55.6	36.7	51.3	16.2	0	0	0	4.5
Dec-00	7.5	71.4	-7.5	47.4	3.8	3.6	71.4	0	0.9
Jan-01	9.8	31.2	-9.8	42.8	4.7	5.2	102.6	0	0.4
Feb-01	11.9	94	-11.9	37.7	5.1	6.8	196.6	0	0.2
Mar-01	20	31.4	-20	30.1	7.5	12.5	228	0	0.1
Apr-01	42.1	36.4	106.5	100	42.1	0	114	36.6	20.2
May-01	78.1	92.2	66.5	100	78.1	0	57	66.5	47
Jun-01	111.9	61.8	-24.7	75.3	111.9	0	28.5	0	24.3
Jul-01	120.2	34	-73.7	19.8	102	18.2	14.3	0	12.3
Aug-01	117.8	34.6	-77.8	4.4	55.4	62.4	7.1	0	7
Sep-01	60.6	50.4	-5.6	4.2	55.3	5.4	0	0	5.2
Oct-01	33.2	108.8	70.1	74.3	33.2	0	0	0	6.8
Nov-01	20.1	75	51.2	100	20.1	0	0	25.5	17.1
Dec-01	13	40.6	25.6	100	13	0	0	25.6	21.5
Jan-02	12.3	46.2	-12.3	87.7	12.3	0	46.2	0	9.7
Feb-02	13.2	38.4	-13.2	76.1	11.6	1.6	84.6	0	4.9
Mar-02	20.9	61.3	79.6	100	20.9	0	42.3	55.8	33.4
Apr-02	39.6	103.2	79.6	100	39.6	0	21.2	79.6	60.1
May-02	61.3	80.7	25.9	100	61.3	0	10.6	25.9	44.5
Jun-02	107.8	59.6	-45.9	54.1	107.8	0	5.3	0	23.2
Jul-02	146.6	59	-85.3	8	107.5	39.2	0	0	13.1
Aug-02	113.5	11.6	-102.4	0	19	94.5	0	0	5.6
Sep-02	75.3	59.2	-19.1	0	56.2	19.1	0	0	5.5
Oct-02	29.9	43	10.9	10.9	29.9	0	0	0	3.4
Nov-02	15.8	67.2	48.1	59	15.8	0	0	0	4
Dec-02	10.3	32.5	-10.3	52.9	6.1	4.2	32.5	0	0.3
Jan-03	7.6	35.4	-7.6	48.9	4	3.6	67.9	0	0.2
Feb-03	9.3	46.8	-9.3	44.4	4.5	4.7	114.7	0	0.1
Mar-03	19.5	50	-19.5	35.7	8.7	10.9	164.7	0	0
Apr-03	35.9	60.8	104.3	100	35.9	0	82.4	40	23
May-03	66.9	152.8	119.5	100	66.9	0	41.2	119.5	77.4
Jun-03	102.6	63.8	-21.4	78.6	102.6	0	20.6	0	38.1
Jul-03	126.4	66.2	-53.2	36.8	115	11.4	10.3	0	20.7
Aug-03	110	53.4	-54.1	16.9	75.8	34.2	5.1	0	11.4
Sep-03	61.8	114.2	51.9	68.8	61.8	0	0	0	10.1
Oct-03	30.3	49.4	16.7	85.4	30.3	0	0	0	4.6
Nov-03	17.3	141.2	116.8	100	17.3	0	0	102.3	59.3
Dec-03	11.6	61.6	-11.6	88.4	11.6	0	61.6	0	26.1
Jan-04	7.1	49.6	-7.1	82.1	6.2	0.8	111.2	0	13.1
Feb-04	11.3	20.8	-11.3	72.8	9.3	2	132	0	6.5
Mar-04	23.5	63.4	102.7	100	23.5	0	66	75.6	44.2
Apr-04	38.9	64.2	55.1	100	38.9	0	33	55.1	51.3
May-04	70.7	98.8	39.6	100	70.7	0	16.5	39.6	48.8
Jun-04	98.3	62.8	-30.3	69.7	98.3	0	8.2	0	25.1
Jul-04	118	119.8	4	73.7	118	0	0	0	17
Aug-04	93.6	60	-36.6	46.7	84	9.6	0	0	8.5
Sep-04	67.4	25.2	-43.4	26.4	44.2	23.1	0	0	4
Oct-04	33.4	35.2	0	26.4	33.4	0	0	0	3.1
Nov-04	18.1	64.8	43.5	69.9	18.1	0	0	0	3.9
Dec-04	9.8	90.4	-9.8	63.1	6.9	3	90.4	0	0.3

				Soil		snow			
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
Jan-05	8.3	70.4	-8.3	57.8	5.2	3.1	160.8	0	0.2
Feb-05	11.2	75.6	-11.2	51.4	6.5	4.7	236.4	0	0.1
Mar-05	18.5	32.8	-18.5	41.9	9.5	9	269.2	0	0
Apr-05	40.8	97.6	186.5	100	40.8	0	134.6	128.4	69.1
May-05	65.2	14.4	15.7	100	65.2	0	67.3	15.7	40.7
Jun-05	134	31.8	-70.1	29.9	134	0	33.6	0	21.6
Jul-05	145.7	20.4	-109.5	0	66.1	79.6	16.8	0	11
Aug-05	112.8	135.6	24.5	24.5	112.8	0	8.4	0	11.8
Sep-05	69.9	79.6	14.1	38.6	69.9	0	0	0	6.5
Oct-05	34.3	47.4	10.8	49.4	34.3	0	0	0	3.6
Nov-05	17.7	102.2	79.4	100	17.7	0	0	28.7	20.1
Dec-05	9.4	58.9	-9.4	90.6	9.4	0	58.9	0	7.5
Jan-06	12.8	74.6	87.5	100	12.8	0	29.4	78.1	46.5
Feb-06	11.5	74.8	-11.5	88.5	11.5	0	104.2	0	21.4
Mar-06	22.1	48.8	76.4	100	22.1	0	52.1	64.9	45.6
Apr-06	41.9	62.4	43.5	100	41.9	0	26.1	43.5	46.4
May-06	76.2	82	14.8	100	76.2	0	13	14.8	33.1
Jun-06	112.6	45.4	-63	37	112.6	0	6.5	0	16.8
Jul-06	139.5	105.2	-33.1	24.8	118.7	20.8	0	0	12.5
Aug-06	103.4	40.2	-65.2	8.6	54.4	49	0	0	5.6
Sep-06	57	77.6	16.7	25.4	57	0	0	0	5.7
Oct-06	29.5	120.6	85	100	29.5	0	0	10.4	12.1
Nov-06	18	71.7	50.2	100	18	0	0	50.2	31.7
Dec-06	13.2	62.4	46.1	100	13.2	0	0	46.1	40.2
Jan-07	10.6	38.6	-10.6	89.4	10.6	0	38.6	0	18.6
Feb-07	8.5	24.6	-8.5	81.8	7.6	0.9	63.2	0	9.3
Mar-07	20.9	33.4	42.4	100	20.9	0	31.6	24.3	18.4
Apr-07	36.8	60.8	36.8	100	36.8	0	15.8	36.8	29.8
May-07	75.7	73.6	2.1	100	75.7	0	7.9	2.1	18.1
Jun-07	119.8	43.2	-70.9	29.1	119.8	0	0	0	9.4
Jul-07	122.5	47.4	-77.5	6.6	67.6	54.9	0	0	6
Aug-07	112.1	20.8	-92.3	0.5	25.8	86.2	0	0	2.8
Sep-07	67.4	28.6	-40.2	0.3	27.4	40	0	0	2.3
Oct-07	41.5	41.2	-2.4	0.3	39.1	2.4	0	0	2.5
Nov-07	15.2	87.8	68.2	68.5	15.2	0	0	0	4.6
Dec-07	10.1	92.7	-10.1	61.6	6.9	3.2	92.7	0	0.1
Jan-08	11.1	58.2	-11.1	54.7	6.8	4.3	150.9	0	0.1
Feb-08	10.3	107.6	-10.3	49.1	5.6	4.7	258.5	0	0
Mar-08	18.3	61.6	-18.3	40.1	9	9.3	320.1	0	0
Apr-08	45.4	54.6	166.5	100	45.4	0	160	106.6	56
May-08	64.8	68.8	80.5	100	64.8	0	80	80.5	70.4
Jun-08	111.2	110.4	33.7	100	111.2	0	40	33.7	55.8
Jul-08	124	193.2	79.5	100	124	0	20	79.5	74.6
Aug-08	94.8	92.6	3.2	100	94.8	0	10	3.2	38.7
Sep-08	61.4	83.4	22.9	100	61.4	0	5	22.9	32.6
Oct-08	30.1	39.6	12.5	100	30.1	0	0	12.5	22.5
Nov-08	15.5	79.8	60.3	100	15.5	0	0	60.3	44.4
Dec-08	9.7	99.8	-9.7	90.3	9.7	0	99.8	0	20.2
Jan-09	7.3	44.4	-7.3	83.7	6.6	0.7	144.2	0	10.1
Feb-09	11.4	73.6	-11.4	74.2	9.5	1.9	217.8	0	5.1

				Soil			snow		
Date	PET	Р	P-PET	Moisture	AET	PET-AET	Storage	Surplus	ROtotal
Mar-09	21.4	68.8	152.8	100	21.4	0	108.9	127	69.5
Apr-09	40.8	133.6	140.5	100	40.8	0	54.4	140.5	110
May-09	70.3	60.8	14.7	100	70.3	0	27.2	14.7	62
Jun-09	97.6	70.2	-17.3	82.7	97.6	0	13.6	0	33
Jul-09	107.5	84.8	-20.2	66	104	3.5	6.8	0	19
Aug-09	100.2	144	43.4	100	100.2	0	0	9.4	19.3
Sep-09	61.4	40.2	-23.2	76.8	61.4	0	0	0	8
Oct-09	29.5	71	37.9	100	29.5	0	0	14.7	13.9
Nov-09	18.8	32.2	11.8	100	18.8	0	0	11.8	12.7
Dec-09	10.1	80.4	-10.1	89.9	10.1	0	80.4	0	5.6
Jan-10	9.2	24.4	-9.2	81.7	8.2	0.9	104.8	0	2.8
Feb-10	11.6	24.8	-11.6	72.2	9.5	2.1	129.6	0	1.4
Mar-10	26.8	62.6	97.5	100	26.8	0	64.8	69.7	38.7
Apr-10	48.3	36.2	18.5	100	48.3	0	32.4	18.5	28.8
May-10	84.1	51	-19.5	80.5	84.1	0	16.2	0	16.1
Jun-10	108.5	191.6	81.6	100	108.5	0	8.1	62.1	47.4
Jul-10	138.7	89.6	-45.4	54.6	138.7	0	0	0	23.4
Aug-10	112.1	58.6	-56.4	23.8	86.4	25.6	0	0	12.4
Sep-10	59.5	88.2	24.3	48.1	59.5	0	0	0	9.1
Oct-10	32.4	57.2	21.9	70	32.4	0	0	0	5.2
Nov-10	17.1	66.2	45.8	100	17.1	0	0	15.8	12.4
Dec-10	9.2	36.8	-9.2	90.8	9.2	0	36.8	0	4.5
Jan-11	8.2	42	-8.2	83.3	7.4	0.8	78.8	0	2.3
Feb-11	10.2	47	-10.2	74.8	8.5	1.7	125.8	0	1.1
Mar-11	19.8	91.4	-19.8	60	14.8	5	217.2	0	0.6
Apr-11	38.6	96.6	161.7	100	38.6	0	108.6	121.7	66
May-11	74.8	142	114.4	100	74.8	0	54.3	114.4	94.9
Jun-11	107.8	59	-24.6	75.4	107.8	0	27.2	0	46.8
Jul-11	148.5	32.4	-104.1	0	119.7	28.7	13.6	0	23.6
Aug-11	108.6	72.2	-33.3	0	75.4	33.3	6.8	0	14.6
Sep-11	64.5	85	23	23	64.5	0	0	0	9.7
Oct-11	33	119.2	80.2	100	33	0	0	3.3	10.3
Nov-11	19.5	98	73.6	100	19.5	0	0	73.6	43.9
Dec-11	12.3	52	37.1	100	12.3	0	0	37.1	40.7
Jan-12	11.4	54.2	-11.4	88.6	11.4	0	54.2	0	19
Feb-12	14.1	26.6	-14.1	76.2	12.5	1.6	80.8	0	9.5
Mar-12	30.9	18	26.6	100	30.9	0	40.4	2.8	7
Apr-12	39.6	43.6	22	100	39.6	0	20.2	22	16.3
May-12	87.3	44.4	-35	65	87.3	0	10.1	0	9.3
Jun-12	118.3	76.4	-40.7	38.5	104.1	14.3	5.1	0	7.3
Jul-12	147.5	100	-47.5	20.2	118.3	29.2	0	0	6.8
Aug-12	106.6	52.4	-56.9	8.7	61.3	45.4	0	0	3.5
Sep-12	59.5	121	55.4	64.2	59.5	0	0	0	6.5
Oct-12	32.4	126.4	87.7	100	32.4	0	0	51.8	32.5
Nov-12	16.1	10.2	-6.4	93.6	16.1	0	0	0	13.6
Dec-12	12.3	58.4	43.2	100	12.3	0	0	36.8	27.9

Appendix I

Groundwater Contaminants of Concern

							DISCUSSION NORTH	TRUE NORTH
	M	₩-02						
*			\searrow		MW-02			
				<u> </u>	SAMPLE DA	TE	Мо	
2		/			2019 06 2	4	7.0	
) /	/		MW-22 SAMPLE DA 2019 06 2	ATE 5	Mo 15.7	
	//				MW/ 02			1
+	<u> </u>				SAMPLE DA	TF	Mo	-
	2	ŝ			2019 06 2	.5	14.9	-
/	¥				\$	M (\$	LEGEND IONITORING WE SNC-LAVALIN,	LL 2019)
MW-33					Ô	G	OCATION WHER ROUNDWATER	RE MOST RECENT SAMPLE MET
SAMPLE	DATE	Mo				S T G	HAT WERE ANA	ALL PARAMETERS
2019 06	527	18.3					CATION WHER ROUNDWATER TANDARDS FOF ARAMETER THA HOWN IN RED	E MOST RECENT SAMPLE EXCEEDED R AT LEAST ONE IT WAS ANALYSED,
MW-30	DATE	Mo			RED	RCC	ET THE MOE S ED COLOURED ONCENTRATION	AND UNDERLINED
2019 06	524	6.9				5	IFERRED LIMIT	S OF CONTAMINATION
	TICK		GTANOLOGO			T C F S E P	ORONTO AND ONSERVATION LOODPLAIN ITE PROPERTY XISTING BUILDI ROPOSED BUIL	REGION AUTHORITY (TRCA) LINE ING .DING
ABBREVIA Mo	TION	UNITS µg/L	STANDARDS 70			P	ROPOSED INFR	RASTRUCTURE
TON STAN POTABLE USE (MO	DARDS GROU E, 20	FOR USE NDWATER 11)			NOTE(S): 1. SCALE AND ARE APPRO 2. INFORMATIO IT IS PRINT OTHER THA 3. 'm' : METF) SIT DXIM DN C TED, NN IT RES	E INFRASTRUC ATE IN THIS FIGUR PHOTOCOPIED S ORIGINAL SI	TURE LOCATIONS E MAY BE LOST IF OR FAXED IN IZE AND COLOURS
CITY OF 0192 HI BRAMP	BRAM GHWA TON,	IPTON Y 50, ON			Title: GROUN	٩Dw	ATER ANALY	TICAL RESULTS
665125	Filenar	ne: 00	08FI1_66512	5	Date: N	OVE	MBER 2019	Dwg No: APPENDIX I
AG	veritie	J.	W	ינ '	-roject manager:		AY	

WE: P:\City of Brampton\Johnston Transit Facility\665125\40_Execution\47_Wrkg_Vers\CAD_GIS\009 (Hydrogeological)\008F11_665125.dwg

PAGE FORMAT: 11x17

195 The West Mall Toronto, Ontario, Canada M9C 5K1 416-252-5311 www.snclavalin.com